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Abstract 
 
Primates exploring and exploiting a continuous sensorimotor space rely on maps in the dorsal stream 

that guide visual search, locomotion, and grasp. For example, an animal swinging from one tree limb 
to the next uses rapidly evolving sensorimotor representations to decide when to harvest a reward. 
We show that such exploration/exploitation depends on dynamic maps of competing option values in 

the human dorsal stream. Using a reinforcement learning (RL) model capable of rapid learning and 
efficient exploration and exploitation, we show that preferred options are selectively maintained on 

the map while the values of spatiotemporally distant alternatives are compressed. Consistent with 
biophysical models of cortical option competition, dorsal stream BOLD signal increased and posterior 

cortical β1/α oscillations desynchronized as the number of potentially valuable options grew, 

matching predictions of information-compressing RL rather than traditional RL that caches long-term 

values. BOLD and β1/α responses were correlated and predicted the successful transition from 

exploration to exploitation. These option competition dynamics were observed across parietal and 
frontal dorsal stream regions, but not in the occipito-temporal MT+ sensitive to the average reward 
rate. Our results also illustrate that models’ diverging predictions about information dynamics can 

help to adjudicate between them based on population activity. 
 
Graphical abstract 
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Introduction 

Organisms face a difficult dilemma between exploiting options that are known to be good and 

exploring new options that might be even better. When a vertebrate faces a few discrete options, the 
striatum and amygdala can resolve the explore-exploit dilemma by representing options 
egocentrically (e.g., right/left) and tuning the exploration rate based on meso-striatal dopaminergic 

signals1–4. In more complex terrestrial environments, however, quadrupeds rely on world-centric 
hippocampal cognitive maps that incorporate reinforcement and are stored in long-term memory5–7. 

While these mechanisms work efficiently at slower timescales, exploration and exploitation become 
more demanding when we move rapidly through a dynamic environment. 

For example, as an adaptation to arboreal hunting and foraging on terminal branches, primates 

evolved visuo-motor systems that support fast and precise visually guided actions8. These behaviors 
rely on the cortical “where” stream, or the dorsal attention network (DAN), which integrates visual 

and somatosensory information to build dynamic world-centric maps that guide visual search, 
locomotion, and grasp. More specifically, the posterior parietal cortex (PPC) constructs maps using 

visual inputs from temporal-occipital areas such as MT+ as well as parietal somatosensory inputs. In 
turn, the PPC sends map-based outputs to the frontal dorsal and ventral premotor (PMd and PMv) 
cortex and the frontal eye fields (FEF) that guide action9–11.  

Visuomotor learning has to occur at a faster timescale than instrumental learning in the basal 
forebrain and striatum, which integrates reinforcement slowly and retains long-term values12. 

Moreover, PPC maps contain rich visuomotor data necessary to decide what actions are likely to 
succeed in current and upcoming spatio-temporal locations, e.g., when an insect can be grasped on a 

moving branch13–15. These pragmatic maps represent programs of movement toward currently 
available options that are based on prior visuomotor experience9. Studies of gaze control, for 
example, find that PPC facilitates goal-congruent saccades by comparing what one is looking at 

versus what one is looking for10.  

How are these goals set? The PPC integrates past visuomotor experience and rewards16, establishing 

bi-directional links between attention and learning15. Visual stimuli repeatedly paired with rewards 
gradually gain priority on the PPC map and will be preferred in visuomotor interactions such as 

grasping actions. When a primate faces an array of potentially valuable options, PPC subpopulations 
representing them compete for behavioral selection9. Yet, we do not understand the mechanisms that 
enable the rapid integration of reinforcement into PPC maps. This is in part because most studies of 

reward learning employed a handful of spatially unstructured options that may require little 
involvement of the PPC. 

Here, we considered how encoding of reinforcement in the PPC, occipito-temporal and prefrontal 
DAN regions may resolve option competition and enable exploitation. We experimentally 

manipulated the distribution of rewards during rapid movement through a one-dimensional 
continuous space, as a clock hand revolves around a circle (Figure 1A), inducing value-laden 
continuous visuomotor representations. We tested the general hypothesis that representations of 

reinforcement history in PPC are integrated into a map that supports exploitation of the most-
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rewarded option. Given the rapid dynamics of visuomotor learning in PPC, prior studies have 
considered working memory (WM)17,18 or serial hypothesis testing14,19. Leveraging a previously 
validated computational model20, we demonstrate, however, that option competition in the DAN 

cannot be fully explained by WM or traditional RL, but involves an information-compressing RL 
process that selectively maintains the values of preferred options and allows non-preferred 
alternatives to decay.  

The key insight here is that the entropy of values within a map tunes the explore-exploit balance20 (cf. 

policy entropy in artificial intelligence21). Consider a learning agent who tracks the expected reward or 
value associated with each target or option, termed the value function. When the estimated values of 
all options are equal, the entropy of the value function is highest, and the agent can needs to explore 

to discovery truly superior options. Conversely, when a single superior option (global value maximum) 
can be exploited, entropy is low. Thus, entropy of the value function quantifies global uncertainty 
about which option is best. Exploration generally increases the mutual information between the 

learned (agent’s) and objective (environment’s) value functions. However, a reward-maximizing agent 
only needs to discover the highest-valued options, rather than attempting to learn precisely the value 

of every option22. Furthermore, maintaining and updating a detailed map incurs a high memory cost 
and a risk of cognitive failure, which humans strive to minimize23. Thus, a resource-rational agent 
should reduce the entropy of its learned value functioncf. 24.  

We have previously shown that selectively maintaining the values of preferred options and forgetting 
non-preferred alternatives reduces the entropy or compresses the information contained in the value 

function20. This information-compressing RL model learns and forgets faster than traditional RL, 
almost as quickly as classical buffer WM models. Yet, while working memory excels in recognizing 

deterministic rules, its limited buffer becomes a hindrance in stochastic environments. By contrast, 
resource-rational information-compressing RL integrates reinforcement over a period sufficiently long 
to explore and exploit stochastic environments efficiently. We have previously shown in a continuous 

space that it outperforms more memory-intensive traditional RL with long-term value persistence20. 
Moreover, whereas WM models fail to explain empirical findings of learned long-term value or 
salience signals in the PPC25,26, information-compressing RL accounts for them and makes a key 

neural prediction: Increases in the entropy of the learned value function, and consequently the 
number of potentially good options, should recruit more PPC neuronal subpopulations representing 

them. Entropy decreases should have the opposite effect, as fewer subpopulations dominate the 
output and behavior shifts from exploration to exploitation. Critically, traditional RL does not predict 
entropy decreases during successful learning and does not link entropy dynamics to exploitation20. By 

contrast, WM models predict divergent entropy dynamics, determined only by the content of the 
buffer. 

Here, we adjudicate among alternative accounts of value-based option competition in the DAN: 
traditional RL, information-compressing RL, and WM, alone or in combination. Biophysical models 

and electrophysiological studies of option competition in the posterior cortex suggest that each 

competing option may be encoded by a subpopulation with a unique phase of β1/α  oscillatory 

output17,18,27–30. Thus, we hypothesized that increases in the number of close-valued options would 
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induce a β1/α desynchronization. We also examined whether BOLD and oscillatory dynamics 
consistent with information-compressing RL would predict a successful explore-exploit transition. 

Two studies of DAN BOLD and one MEG study of posterior oscillations provided evidence supporting 
information-compressing RL. 

Results 

We begin by describing (i) behavior on the clock task and our information-compressing RL model, 
SCEPTIC (StrategiC Exploration/exploiTation of Instrumental Contingencies) and (ii) the connectivity-
based parcellation of the human DAN used here. Our main analyses focus on entropy dynamics and 

the transition from exploration to exploitation. We report on distinct neural substrates of exploration 
elsewhere. 
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Figure 1. Paradigm and SCEPTIC model 

(A) The clock paradigm consists of decision and feedback phases. During the decision phase, a dot revolves 360° aroun

central stimulus over the course of four seconds. Participants press a button to stop the revolution and receive a 

probabilistic outcome. 

(B) Evolution of subjects’ response times (RT) by contingency and performance.  Panels represent participants whose t

earnings were above or below the sample median.  
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(C) Rewards are drawn from one of four monotonically time-varying contingencies: two learnable (increasing expected 
value, IEV, and decreasing expected value, DEV, dark colors), and two unlearnable (constant expected value, CEV, and 
constant expected value–reversed, CEVR, light colors). Reward probabilities and magnitudes vary independently.  

(D) Evolution of subjects’ response time swings (RT swings) by contingency and performance.  

(E) SCEPTIC model: basis function representation. Top: Subject responds at 1s and wins 110 points. Bottom left: The 1D 
space of the task is tiled with Gaussian-shaped learning elements with staggered receptive fields. Bottom right: the reward 
at 1s updates expected values (weights) of nearby basis elements.  

(F) Entropy dynamics of the information-compressing model, mechanism. Left: example value distribution early in 
learning, when all locations have similar values and entropy is high (top: visual space of the task, bottom: linear 
coordinates with location on abscissa. Right: example value distribution late in learning, contrasting information-
compressing RL (black line, colored bases) with traditional RL (grey line). Information compression (green arrows) reduces 
the entropy of the value distribution. 

(G) Entropy dynamics of the information-compressing vs. traditional RL model across the entire experiment. High initial 
entropy reflects random uniform prior basis element weights, however qualitatively the same dynamics are seen with 
priors of 0 (Figure s1D-F). 

(H) The same as G, for an average run. First run is excluded to eliminate effect of priors. 

Behavior and SCEPTIC model 

On the clock task (Figure 1A), participants explore and learn reward contingencies within a four-

second time interval, presenting a challenging unidimensional continuous environment. The passage 
of time is marked by the rotation of a dot around a clock face, reducing demands on internal timing. 
They are told to find the response time that yields the most points. To encourage extensive 

exploration and trial-by-trial learning, the task employs four stochastic reward contingencies with 
varying reward probability/magnitude tradeoffs (Figure 1C), which require integration of 

reinforcement over time and impede purely WM-based or heuristic strategies.  Indeed, whereas 
people’s responses shifted toward value maxima in learnable contingencies (Figure 1B), even more 
successful participants tended not to respond as early as possible in DEV or as late as possible in IEV. 

Thus, participants generally did not recognize that contingencies were monotonic, instead searching 
for a subjective value maximum (RTVmax); their estimate of its location often shifted within the block. 
Trial-wise changes of response times (aka ‘RT swings’) provide a model-free index of exploration. Early 

in learning, better-performing participants displayed large RT swings followed by a decline as they 
shifted to exploiting the subjective value maximum. Less successful participants kept exploring 

stochastically, with moderately large RT swings throughout, never settling on a clear value maximum. 
Curiously, successful participants transitioned from exploration to exploitation even in unlearnable 
contingencies where no objective value maximum exists20. As detailed in the next section, this 

behavior can be explained by adaptive selective maintenance of reinforcement histories. 

Our SCEPTIC reinforcement learning model20 quantifies both local reinforcement (reward prediction 

errors) and global value map updates. On the clock task SCEPTIC approximates the value function or 
expected reward across the space (interval) with a set of learning elements whose temporal receptive 
fields cover the interval31,32. Each element learns from temporally proximal rewards, updating its 

weight by reward prediction errors or the discrepancy between model-predicted reward at the chosen 
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RT and the obtained reward (Figure 1E). The highest-valued RT is the global maximum (aka RTVmax) of 
the model-estimated value function (Figure 1F).  

To understand how global map updates can be quantified, we can think of locations (basis elements) 

as an alphabet, reinforcement sequences as messages, and the value function as an information 
source encoding the reinforcement history. The information content of this source is given by 
Shannon’s entropy of the value function (normalized element weights), which is high when multiple 

attractive options compete and low when a single option dominates (Figure 1F). Thus, increases in 
entropy reflect the emergence of competing options on the global map. We have previously found 

that human behavior on the clock task is best explained by a model that selectively maintains the 
values of favored actions and allows the alternatives to decay, compressing the information content – 
that is, decreasing the entropy – of  the value function20. This compression heightens the relative 

dominance of the best actions and thus facilitates exploitation and efficient exploration (Figure s1A-
C). Critically, compression gives rise to entropy dynamics unpredicted by traditional RL (Figures 1G-H, 
s1D-E). These information dynamics scale with performance and non-verbal intelligence20. To test the 

neural predictions of this model, we examine whether activity in the DAN is more consistent with an 
information-compressed value map or that from an otherwise identical traditional RL variant of 

SCEPTIC with long-term persistence of values (for details, see Methods). 

Connectivity-based parcellation of the human DAN 

Figure 2. Human dorsal attention network 
(DAN) and responses to value entropy and 
its change.  

(A) DAN nodes arranged along the 
visuomotor transformation gradient, 
connectivity-based parcellation of Schaefer 
et al. (2018), details: Table s1. Detailed 
parcellation: Figure s2.  

(B) Responses to value entropy (left) and 
entropy change (middle), voxel-wise GLM; 
Schaefer DAN parcellation for the same 
axial slice (right; z = 55). Responses to 
reward/omission: Figure s3. 

Modern studies of functional brain 
connectivity in the human cortex 
reliably identify a dorsal attention 

network33–36, encompassing the 
temporo-occipital (putative human 

MT+), posterior parietal (IPS, SPL) 
and frontal premotor regions (FEF, 
PMv, PMd). A prominent parcellation 
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of human functional network structure33,34 further subdivides the DAN into two subnetworks along the 
caudo-rostral visuomotor gradient: the caudal subnetwork, consisting of MT+ and caudal PPC, and the 
rostral subnetwork consisting of rostral PPC and frontal premotor regions (Figure 2). Below, we 

describe activity across these four groups of regions. Since DAN subregions are characterized 
extensively in the macaque, for reference we label the human connectivity-based subregions 
according to their putative homology with monkey areas37–44 (Figure  s2, Table s1; “putative human” is 

omitted from region names below for simplicity since the interpretation of our results does not 
depend on precise homology between human and monkey areas). 

Value information dynamics in the dorsal stream and the transition from exploration to 

exploitation 

While fMRI and MEG cannot access option representations in individual neurons or subpopulations, 

our analyses of learned value information dynamics enabled us to adjudicate among competing 
accounts based on population-level measures. Specifically, if a subpopulation is recruited to represent 
the value of each option, the number of active subpopulations should scale with the information 

content of the learned value function. Thus, we can test whether maps contained in the human DAN 
undergo reinforcement-based updates as predicted by our model by regressing trial-by-trial entropy 

change against BOLD signal and posterior oscillatory power (Figure 1F). Entropy change reflects a 
global update to the dispersion of values for chosen and unchosen options and is distinct from 
prediction errors, which only reflect the local update to the chosen option, conceptually as well as 

statistically (|r|<0.1 for signed or absolute prediction errors across both samples reported here). 
Moreover, the information-compressing vs. traditional RL variants of the SCEPTIC model make 

different predictions about the nature of entropy change. Under the information-compressing model, 
entropy change has two components: 1) the decay of unchosen options, which reduces entropy of the 
value function and 2) value updates to the chosen action, which can increase or decrease entropy 

depending on whether the update promotes the dominant option relative to alternatives. By 
comparison, entropy change under the traditional RL model depends only on updates to the chosen 
action and entropy is generally higher relative to the information-compressing model20. To 

demonstrate information-compressing learning dynamics, we contrasted the neural fit of our 
information-compressing model with an otherwise identical traditional RL comparator lacking 

information compression. We further ascertained that observations supporting it are not explained by 
random between-persons heterogeneity or confounds through fine-grained analyses of within-trial 
activity, stringent type I error control, sensitivity analyses, behavioral validation, and out-of-session 

and out-of-sample replication. 
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DAN BOLD scales with model-predicted value map information dynamics 

Our whole-brain analysis revealed that the number of potentially advantageous options measured by 

model-predicted value entropy and its change (Figure 2B;  Tables s2-s3)1 recruited frontoparietal 
regions of the DAN, but not MT+, the basal ganglia or thalamus. Entropy change additionally recruited 
nodes of the cinguloopercular network (dorsal ACC and anterior insula/frontal operculum) and the 

rostrolateral prefrontal cortex.  

Frontoparietal DAN nodes but not MT+ specifically track entropy change and not novelty 

If DAN responses correlated with entropy change reflect value map updates, then activity should be 
modulated post-reinforcement. Indeed, analyses of within-trial BOLD activity revealed that entropy 
change modulated frontoparietal DAN activity post-outcome, particularly in caudal PPC and frontal-

premotor nodes (Figure 3A). Responses in MT+ were much weaker, in contrast to responses to scalar 
value of the best option (Figure 3C), which were positive in MT+ and negative in fronto-parietal nodes. 

Effects of entropy change were evident with or without accounting for between-subject heterogeneity 
(individual random slopes), behavioral confounds (current and lagged response times) and spatially 
non-specific reinforcement features (scalar Vmax [Figure 3C], reward/omission, prediction error all 

included as covariates in Figure 3A; model without covariates: Figure s4 A).  

Value entropy generally rises during early exploration when many options are sampled (Figure 1H), 
and one can argue that its association with neural responses is an artifact of novelty. To rule out this 

confound, we manipulated value entropy by changing the reward contingency every 40 trials without 
any explicit cues in a follow-up study of 142 older individuals with and without psychopathology. In 

this replication study, frontoparietal DAN responses to entropy change were qualitatively unchanged, 
even though we had excluded the first 10 trials from analyses to eliminate novelty effects (Figure 3B). 

                                                 
1

 We note that including entropy, entropy change, and prediction errors simultaneously in GLM analyses does not 
meaningfully change the pattern of results. This is due to the relatively low level of correlation among these signals. 
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Figure 3. Information dynamics of the value function, DAN BOLD signal.  

(A) Responses to value entropy change (higher signal to increases reflecting a rising number of potentially valuable 

options), multi-level analysis of deconvolved BOLD signal from the original study, TR = 1s.  

(B) Same, replication sample of older adults with and without depression, TR = 0.6s. NB: Since BOLD response is smoo

we can only interpret the peak response as indicating the timing of activity.  

(C) Response to scalar Vmax, original study. D. Neural model comparison providing evidence of information-compress

rather than traditional reinforcement learning (RL). E. Analogous comparison demonstrating that DAN responses to 

entropy change cannot be explained solely in terms of spatial working memory updates. 

Frontoparietal BOLD dynamics specifically support reinforcement learning with information compression 

A hallmark of traditional instrumental learning is the long-term persistence of option values. In 

contrast, in our information-compressing model of learning, values of preferred regions are 

maintained, whereas values of spatiotemporally distant alternatives decay. To find evidence of suc

compression, we compared the neural fit of entropy change signals from the information-

compressing model vs. an otherwise identical model without compression. The information-

compressing model better accounted for DAN responses to entropy change, particularly in PPC-

caudal and frontal-premotor regions, but not in MT+ (AICselective – AICfull: ≥ -847, Figure 3D). 

Compression in the SCEPTIC model occurs as part of the reinforcement-driven update (Eq. 7), and 

expected, its advantage peaks at reinforcement. 

oth, 

ing 

ch 

as 
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Information-compressing learning is not explained by working memory updates, but complements them 

One alternative possibility is that participants perform the clock task by holding recent choices and 

outcomes in working memory and repeating recently rewarded choices. Human choices, however, are 
not adequately explained by such a process. The SCEPTIC-derived RTVmax explained substantial 
variance in choices even after accounting for a 5-trial buffer of choices and outcomes (fMRI session: t = 

5.42, MEG session: t = 6.43,Table s4; outcomes >4 trials back had no detectable impact on choice). 

Neural responses to the number of valuable options could also reflect updates to a spatial working 
memory buffer. Although the above behavioral analyses speak to the contrary, it was important to 

rule out this alternative account using neural data. By definition, spatial working memory contains the 
history of chosen locations (response times) and corresponding outcomes. Thus, to model working 

memory information content in a manner directly comparable with that of SCEPTIC, we encoded the 
selection history using the same representational structure (basis functions and spatial generalization 
gradient), adding a buffer of recent outcomes (detailed in Methods). We then predicted neural activity 

with the entropy and entropy change of the selection history and outcome history (reflecting working 
memory buffer updates, Figure s5 B-C) with and without corresponding SCEPTIC signals. As in our 
main analysis, responses to value entropy change peaked ~1s post-outcome (Figure s5 A), and model 

fit improved by ≥-182 AIC points after adding SCEPTIC predictors (Figure 3E; and after accounting for 
random slopes of all entropy variables, ≥-1726 points). Overall, while our analyses replicate common 

findings of spatial working memory representations in the DAN and specifically PPC, they support 
parallel information-compressing updates of option values.  

Another confound related to selection history is the potential impact on value entropy and its neural 

correlates of preceding RT swings, whether they reflect strategic exploration or stochastic or even off-
task responses45.  To rule out this possibility, we quantified a shift in the local distribution of choices as 
the summed Kullback-Leibler divergence (KLD; a metric of divergence between distributions) of 

response times for trials t-4, t-3, and t-2 from the local distribution of response times of the preceding 
three trials. Higher values of this measure reflect a history of larger RT swings. With (Figure 3A) or 

without (Figure s5A) this KLD measure as a covariate the entropy change effects were qualitatively 
unchanged, corroborating the notion that entropy change reflects value map updates rather than 
selection history. Interestingly, on trials following larger RT swings, we observed lower online rostral 

PPC activity and weaker frontoparietal responses to feedback (Figure s5B), potentially indicating 
lapses in sensorimotor activity and attention (see also a similar analysis of MEG below). 

DAN sensitivity to the number of potentially valuable options predicts exploitation 

The analyses above suggest that the DAN contains information-compressed value maps, but do these 

maps indeed govern the transition from exploration to exploitation? To answer this question, we 
tested whether individuals whose DAN activity better tracked with model-predicted value map 
updates (entropy change) made more value-sensitive, exploitative choices. We extracted entropy 

change regression coefficients (“betas”) for each DAN parcel from individual subjects’ whole-brain 
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analyses and entered these as between-subjects predictors in a multilevel survival model (with 

timepoints nested within trials and trials nested within subjects) predicting the momentary rate 

(hazard) of response with SCEPTIC-derived within-trial momentary value and its interaction with th

fMRI beta. This interaction was positive across the parcels, indicating that individual value sensitivi

scaled with entropy change responses across the DAN. This effect was replicated out-of-session 

(Figure 4A; anatomical distribution of behavioral effect was preserved out of session, Figure 4D) an

persisted in sensitivity analyses controlling for the non-decision time (censoring the first 1s of the 

interval) and avoidance of missing the response window (censoring the last 0.5s; Figure s6E-F). Wit

individual random slopes, effects were similar in the original sample, surviving FDR correction in th

out-of-session replication only in premotor parcels (Figure s6A-B). To ensure that this effect did no

depend on the Cox model proportional hazards assumption, we tested it in an independent trial-lev

GLM predicting response times with SCEPTIC-derived RTVmax, the location of the highest-valued 

option, which enabled us to account for additional behavioral confounds (Methods, fMRI Analyses)

and between-subject heterogeneity in value sensitivity (random value slopes). The results were 

qualitatively unchanged (Figures 4B-C, s6). 

he 

ty 

nd 

th 

e 

ot 

vel 

) 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2023. ; https://doi.org/10.1101/2023.05.22.541828doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.22.541828
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Figure 4. BOLD encoding of value information dynamics and behavioral exploitation.  

(A) Multi-level survival analyses examining how the individual’s neural response moderates their behavioral sensitivity to 
within-trial time-varying value. Left: original fMRI session. Right: replication, MEG session.  Greater modulation of 
individual DAN BOLD response by value entropy change predicted more exploitative choices.  

(B), (C) Same, GLM analysis.  

(D) The anatomical pattern of brain-behavior associations was preserved across the original fMRI and replication sessions. 
Each dot represents a single DAN parcel as labeled in panel A. 

Posterior β1/α  suppression reflects value information dynamics 

Having observed dynamic value maps encoded in fronto-parietal DAN BOLD, we sought to 

understand cortical oscillation dynamics that underlie them. A late (550-1000ms post-feedback) β1/α-

band response has been reported on the clock task46, but its functional significance was unclear. We 
hypothesized that this response reflected an update to the parietal value map, with increases in the 

number of valuable options resulting in global desynchronization. Indeed, increases in entropy (and 

the number of valuable options) elicited suppression in the 7-17 Hz (β1/α) band at 400-750 ms, 

prominent in the posterior sensors (Figure 5 A, C). The reconstructed sources of this signal followed an 

anatomical distribution similar to the pattern observed in fMRI (Figure 5D vs. 5E). As in our analyses of 

BOLD, late β1/α suppression was not explained by behavioral confounds (reward, RTt, RTt-1, Vmax; 

Methods, MEG Analyses) and was strongly related to entropy change and absolute prediction errors, 

but not to reward/omission (Figure 5F), suggesting that β1/α oscillations encode updates to the entire 

map of chosen and unchosen options, with the chosen option commanding additional processing. 

This β1/α response was evident in two learnable and one unlearnable condition. However, it was 

almost abolished in CEVR (χ2(3) = 10.14, p < .018) where the probability/magnitude trade-off was the 

opposite of other conditions, indicating that the response was altered when outcomes did not match 

one’s expectations based on experience with previously encountered environments. This late 
suppression spread into the theta band, peaking at 600-800 ms and 3-6 Hz, evident mostly in posterior 

sensors. Additionally, an earlier burst of suppression at 8-17 Hz emerged immediately following 
response and ceased after the outcome (Figure 5A), suggesting that participants were at times 
anticipating an increase in global uncertainty based on their response. 

It is possible that, instead of β1/α desynchronization to entropy increases, our observations reflect 

β1/α synchronization to entropy decreases relative to baseline. We ruled out this possibility by 

separately examining the effects of entropy increase (vs. decrease or no change) and entropy 
decrease (vs. increase or no change; Figure s7A-B).  Whereas entropy increases elicited massive 
suppression at 8-20 Hz peaking at 0.4-0.8s post-outcome and spreading into the theta band, entropy 

decreases did not elicit synchronization of a similar magnitude. 

One could also argue that effects of entropy increases merely reflect a recent history of highly variable 
choices45 rather than updates to the distribution of learned value across competing options.  

Interestingly, while a recent history of RT swings measured by the Kullback-Leibler distance between 
RT{t-3, t-2} and RTt-1, predicted suppression in the 7-16 Hz band (same model as above, Figure s7C), 
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effects of entropy increases persisted while controlling for RT swings (Figure s7A), indicating that both 

selection and reinforcement history are encoded in β1/α oscillations. 

Finally, manipulation effects are heterogeneous across individuals47, and we verified that our findings 
were reliable after accounting for inter-individual heterogeneity by including the subject random slope 

of entropy change in our multi-level models (Figure s7D). 

Posterior β1/α oscillation dynamics support information compression 
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 Figure 5. MEG: oscillatory responses to value information dynamics and exploitation, anatomical and functional 

relationship to BOLD signal.  

(A) Oscillatory response to value entropy change: cool colors represent de-synchronization to increases reflecting a ris

number of potentially valuable options, most prominent between 7-17 Hz (β1/α) band at 400-750 ms.  

(B) Neural model comparison providing evidence of information-compressing rather than traditional RL (c.f. Figure 3D

Hot colors represent AIC difference favoring the information-compressing (selective maintenance) model.  

(C) β1/α de-synchronization was most evident in posterior sensors, consistent with a parietal source.  

(D) Source reconstruction localizes the β1/α suppression to the posterior parietal cortex.  

ing 

). 
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(E) fMRI BOLD map shown for comparison.  

(F) β1/α de-synchronization was much better explained by value entropy change or absolute reward prediction errors than 
by reward/omission, model controlling for individual random slopes. More negative t-statistics indicate a stronger effect.  

(G) Condition-level relationships between individuals’ BOLD and oscillatory responses to entropy change. Light blue bars 
represent individuals with stronger oscillatory responses (greater suppression to entropy increases). Y-axis: higher 
coefficient values indicate stronger BOLD response. X-axis: DAN regions from which BOLD response was extracted. 

Our analyses of BOLD indicated that reinforcement representations in the fronto-parietal DAN nodes 
were compressed as predicted by SCEPTIC. To understand whether similar information-compressing 

dynamics were reflected in oscillatory activity, we compared the fit of the MLM with entropy change 
regressor derived from either the information-compressing (exactly as in our main analysis above) or 
the traditional RL SCEPTIC model. Indeed, the information-compressing model dominated in the in 

the 8-17 Hz band at 400-750 ms, in the 3-6 Hz band at 600-800 ms and at 8-20 Hz peri-response 
(Figure 5 B), indicating that representations of competing options reflected in oscillatory activity 
displayed information-compressing dynamics predicted by the SCEPTIC model. 

Posterior β1/α oscillation dynamics predict the explore-exploit transition 

To understand whether β1/α suppression responses to an increased number of options (entropy 

change) scaled with exploitation we used models similar to those employed in fMRI analyses (Figure 

4). To ensure that our results generalized across contingencies, we decomposed summary β1/α 

suppression responses into person-level means and condition-wise deviations.  Person-level responses 

predicted exploitation (momentary value * b suppression response: z = 9.47, χ2(1) = 89.69, p < 10-15). 

This effect was robust to between-subject heterogeneity (random slope of value, fixed effect: z = 2.14, 

χ2(1) = 4.57, p = 0.0326) and replicated out-of-session (z = 13.03, χ2(1) = 169.88, p < 10-15), even after 

accounting for between-subject variability in the effect of value (z = 3.40, χ2(1) = 11.60, p < 0.001). 

After accounting for subject-level responses, no additional effect was observed, at the within-person, 

condition level (|z| ≤ 0.94, χ2(1) ≤ 0.86, p > 0.35), suggesting that the relationship of oscillatory 

responses and behavioral exploitation manifests at the between-person level. 

Magnitude of posterior β1/α response scales negatively with BOLD, but only in learnable conditions 

Condition-level β1/α synchrony scaled negatively with BOLD responses across DAN, but only in 

learnable conditions, while the opposite pattern was seen in unlearnable conditions (Figure 5G, β1/α 

response main effect: χ2(1) = 10.65, p = 0.0011, β1/α response *condition χ2(3) = 36.49, p < 10-7), 

suggesting that β1/α suppression and/or BOLD are differentially sensitive to the presence of an 

objective value maximum, and potentially also to the match between current and previously 
encountered contingencies.  

In summary, we found that the fronto-parietal nodes of the dorsal stream represented a compressed 

reinforcement history, mapping values of potentially valuable options as did posterior β1/α 

oscillations.  These neural dynamics predicted a successful transition from exploration to exploitation. 
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Discussion 

When exploring and exploiting a few discrete options, primates rely on choice and reinforcement 
histories encoded in the striatum and amygdala. Additional demands, however, arise when moving 
rapidly through space and choosing when to harvest a reward. Our multimodal imaging study of 

human BOLD signal and cortical oscillations revealed that reward-based learning in such an 
environment involves dynamic value maps in the dorsal stream. More specifically, we found that 

BOLD signals in the PPC and premotor cortex increased and posterior β1/α oscillations 

desynchronized in response to increases in the number of valuable options and, correspondingly, 
uncertainty about the best option. This global uncertainty was quantified by changes in the entropy of 
the learned value function captured by our computational model. These BOLD and oscillatory 

dynamics predicted a successful behavioral transition from exploration to exploitation, with out-of-
session and out-of-sample replication. BOLD dynamics consistent with map updates were seen 
throughout the parietal and frontal nodes of the dorsal stream, but not in the occipito-temporal MT+. 

Much debate about maps in the dorsal stream, especially in the PPC, has focused on what they 
represent. They have been suggested to encode attentional priority48–51, the intention to move52, 

expected value vs. salience of stimuli25,26,53, or expected information gain54,55. Disagreements between 
studies are not entirely explained by anatomical heterogeneity or methodological differences10.  
Rather, this debate may be resolved in part by recognizing that real-world motor programs are 

inextricable from visuospatial and value-laden representations of targets. This aligns with the 
affordance perspective in which sensorimotor systems continuously encode opportunities for action 
emerging in the immediate environment9,56. Affordance representations throughout the dorsal 

stream multiplex visual, oculomotor, motor, and somatosensory information57–59. We observed that 
the nodes in the dorsal stream along the visuomotor gradient from caudal PPC to premotor cortex 

respond similarly to the values of options, consistent with the notion of pragmatic, multimodal 
affordance representations. These dynamics were considerably weaker in the MT+, which instead 
responded to the recent reward and long-term value, potentially indicating that processing of visual 

motion (here, ball motion around the clock face) was enhanced when the expected reward rate was 
high, as electrophysiological studies suggest60. Thus, fronto-parietal regions but not MT+ contain a 

spatially structured value map for all options. 

Our results address the critical question of how competition between multiple affordances is 
resolved9,61,62. Cisek and colleagues speculate that the prevailing affordance in output regions is 

determined by both reinforcement learning and goals signaled to the dorsal stream by ventral 
prefrontal systems63–65. We find that chosen and unchosen option values are updated on the PPC map 
within 0.4–0.7s of reinforcement, predicting exploitation of the highest-valued option. Crucially, 

dorsal stream value map updates and behavior were better described by an information-compressing 
reinforcement learning algorithm relative to traditional instrumental learning, even after accounting 

for updates to the visuospatial WM buffer66. This algorithm selectively maintains preferred actions, 
compressing information about learned values and supporting more efficient exploitation during 
continuous visuomotor interactions.  
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Our observations are not easily explained by an earlier account of reward learning in discrete spaces 
postulating that it relies on early (0.2-0.4s) traditional RL updates and later (0.4-0.7s) working memory 
updates67. During continuous sensorimotor interaction we observe both value map and spatial 

working memory buffer updates 0.4-0.7s post-outcome. How does the PPC obtain information about 
incoming reinforcement? The identity of a reward or goal state may be cached in the dorsal and 
ventral stream65. Thus, upon reaching the goal, reinforcement may be almost instantaneous63. 

Reinforcement may also be signaled meso-striato-thalamo-cortical reward prediction errors. 
However, these signals are unlikely to arrive early enough to enable the observed value map updates63 

and thus may shape learning only at slower timescales. In any case, since updates to values of 
unchosen regions of the continuous space must account for the spatial proximity of the sampled point, 
they can only be updated by a network that contains a full map, such as the PPC. Our results suggest 

that a dual-systems account of competing frontoparietal WM and meso-striatal RL controllers67 may 
not extend to the rapid continuous sensorimotor interaction. Affordance competition must in part be 
resolved through reinforcement learning in the dorsal stream, with information compression 

facilitating a “within-system” decision68.  

The connection between information-compressing RL and β1/α oscillations bridges our population-

level account of option competition in the dorsal stream with biophysically realistic circuit models. 

Gelastopoulos, Whittington and Kopell18 propose that competing representations in the parietal 

cortex are carried by β1/α-synchronized ensembles organized along cortical columns. It is thought that 

recurrent excitation stabilizes preferred options, while lateral inhibition suppresses non-preferred 
alternatives18,69,70.  In line with these circuit-level models and empirical studies, we propose that during 

the value-guided exploration of the sensorimotor space, recruitment of many ensembles produces an 
asynchronous oscillatory output, reflecting greater entropy of the value map and global uncertainty 
about the best action (Figure 6). When an option is preferentially sampled and reinforced, the regional 

output becomes dominated by the β1/α -synchronized ensemble representing this option, promoting 

exploitation. Compression of the value function may depend on lateral inhibition in which dominant 

ensembles suppress and even highjack the β1/α output of competing counterparts, reducing their 

likelihood of behavioral selection18,69.  
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Figure 6. Option competition in the posterior parietal cortex: conceptual model.  

Top: exploration mode. Top left: Multiple options compete for selection and the entropy of the value function is high. T

right: Competing options are represented by neuronal subpopulations with each producing oscillatory output with a 

distinct phase.  

Bottom: exploitation mode. Top left: following information-compressing learning, a global value maximum emerges. T

right: as a result of recurrent excitation and lateral inhibition, the subpopulation representing the dominant option beg

to dominate the output. After Gelastopoulos, Whittington and Koppel (2019; biophysical model of β1/α-stabilized 

competing cortical populations) and Mysore and Kothari (2020; computational models of competitive selection).  

We observe a clear functional correspondence between dorsal stream BOLD and posterior β1/α 

desynchronization: value entropy change modulated BOLD positively (Figure 3A-B, 4B-c) and β1/α 

power negatively (Figure 5A, E). Interestingly, BOLD and β1/α responses were correlated only in 

learnable contingencies. Moreover, oscillations were sensitive to a mismatch with previous 

experience: in a contingency with an unexpectedly reversed probability/magnitude tradeoff, 

oscillatory responses no longer tracked entropy dynamics. While the spatial resolution of fMRI 

complements the temporal resolution of electrophysiology, BOLD and oscillatory power capture 

different aspects of cortical local field potentials. Their empirical correlations are generally positive

gamma band and negative in α and β (which contain additional unique information about BOLD), w

β but not α suppression accelerating increases and delaying decreases in BOLD71–73. Thus, our fMR

and MEG findings align and ostensibly reflect updates to the dynamic value map. These functional 

properties were not shared by other frequency bands such as high beta, theta and delta.  
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The strengths of our study include consistent findings of value entropy dynamics in the human dorsal 
stream across MEG and fMRI modalities, across sessions, and in a separate fMRI sample. Out-of-
session and out-of-sample replications increase confidence in the observed links between dynamic 

maps and behavioral exploration/exploitation. Our computational model comparisons supported the 
conclusion that value maps in the dorsal stream are likely shaped by an information-compressing RL 
process that cannot be explained by traditional instrumental learning or WM buffer accounts. 

Experimental manipulation of reinforcement in a continuous space and our RL model provided access 
to a spatially structured value vector, dissociating global from local updates. Our novel multilevel 

analyses revealed parallel within-trial temporal dynamics of cortical oscillations and deconvolved 
BOLD signals. Finally, our observations of value entropy dynamics replicated in a modified experiment 
with unsignaled reversals, ruling out novelty as an alternative explanation. 

The main limitation of our study is the lack of a causal manipulation that would isolate contributions of 
various DAN nodes to resolving the explore-exploit dilemma, although our findings of dynamic value 
maps in the dorsal stream are in line with human transcranial stimulation studies53,74. Human neural 

stimulation and rodent optogenetic studies are needed to test the model of value-dependent 
affordance competition articulated here.  It is also difficult to know to what extent our findings 

generalize to non-temporal spaces and to punishments as opposed to rewards. Finally, MEG and fMRI 
data were collected in separate sessions, enabling out-of-session replication, but precluding an 
analysis of simultaneous BOLD and cortical oscillation recordings. 

In conclusion, exploration and exploitation of a continuous sensorimotor space depend on dynamic 
value maps in the dorsal stream, particularly in the PPC. Our observations suggest that the dorsal 

stream selectively maintains values of preferred options and compresses out inferior, 
spatiotemporally distant alternatives. Indeed, as circuit models of option competition in the dorsal 

cortex suggest, β1/α oscillatory output of posterior cortical subpopulations desynchronizes when more 

competing options emerge and synchronizes when non-preferred alternatives are compressed out. 

Compression notwithstanding, we show that option values in PPC persist beyond the timescale of the 
WM buffer. Our results support the affordance competition view of maps in dorsal cortex and are at 
odds with the notion that sensorimotor choices require a sequence of temporally distinct sensory, 

reward, cognitive and motor computations. Altogether, our study sheds light on how primates, 
including humans, track the values of alternative options in complex, rapidly changing environments. 

 

Methods 

Participants 

Participants in the original study were 70 typically developing adolescents and young adults aged 14–

30 (M = 21.4, SD = 5.1). Thirty-seven (52.8%) participants were female and 33 were male. Prior to 
enrollment, participants were interviewed to verify that they had no history of neurological disorder, 
brain injury, pervasive developmental disorder, or psychiatric disorder (in self or first-degree relatives). 
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Participants in the replication study were 143 middle-aged and older adults aged 50-80 (M = 62.2, SD = 
6.8), 80 (56%) were female and 62 were male; 101 were diagnosed with DSM-IV non-psychotic major 
depression.  Individuals with a history of psychosis, mania, neurological conditions of the brain and 

current substance use disorders were excluded from the replication study. Participants and/or their 
legal guardians provided informed consent or assent prior to participation in both studies. 
Experimental procedures for this study complied with Code of Ethics of the World Medical Association 

(1964 Declaration of Helsinki) and the Institutional Review Board at the University of Pittsburgh 
(protocols PRO10090478 and STUDY19030288). Participants were compensated $75 for completing 

the original experiment and $150 for completing the replication study, which included other 
experiments. 

Procedure 

Original study 

As part of a larger study, participants completed an exploration and learning task (“clock task”; Figure 
1A, and detailed below) in separate magnetoencephalography (MEG) and functional MRI (fMRI) 

sessions. The order of the fMRI and MEG sessions was counterbalanced (fMRI first n = 34, MEG first n = 
36) and the sessions were separated by 3.71 weeks on average (SD = 1.59 weeks). 

During the fMRI session, participants completed eight runs of the clock task (based on Moustafa et al., 
2008). Runs consisted of 50 trials in which a green dot revolved 360° around a central stimulus over 

the course of 4s. Participants pressed a button to stop the dot, which ended the trial. They then 
received a probabilistic reward for the chosen response time (RT) according to one of four time-
varying contingencies, two learnable (increasing and decreasing expected value) and two unlearnable. 

All contingencies were monotonic but featured reward probability/magnitude tradeoffs that made 
learning difficult (see20 for more detailed analyses of the task). After each response, participants saw 

the probabilistic reward feedback for 0.9s. If participants failed to response within 4s, they received 
zero points.  

The central stimulus was a face with a happy expression or fearful expression, or a phase- scrambled 

version of face images intended to produce an abstract visual stimulus with equal luminance and 
coloration. Faces were selected from the NimStim database75. All four contingencies were collected 

with scrambled images, whereas only IEV and DEV were also collected with happy and fearful faces. 
The effects of the emotion manipulation will be reported in a separate manuscript because they are 

not central for the examination of the neural substrates of exploration and exploitation on this task. 

Each trial was followed by an intertrial interval (ITI) that varied in length according to an exponential 

distribution. To maximize fMRI detection power, the sequence and distribution ITIs were derived using 
a Monte Carlo approach implemented by the optseq2 command in FreeSurfer 5.3. More specifically, we 
simulated five million possible ITI sequences consisting of 50 trials each and retained the top 320 

orders based on their estimation efficiency. For each subject, the experiment software randomly 
sampled 8 of these efficient ITI sequences, which were used for the durations of ITIs in the task. 

During the MEG session, participants completed eight runs of the same task. The contingencies and 
trial structure were identical to fMRI (see Figure 1A), requiring participants to respond within a four-
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second interval to maximize the points they earned. Given the lower signal-to-noise ratio of MEG 
relative to fMRI, runs consisted of 63 trials each. 

As detailed in the results, the behavioral data from the MEG and fMRI sessions were used to test the 

out-of-session consistency of brain-behavior effects identified by each modality. This enabled us to 
establish whether individual differences in dorsal stream activity and exploration/exploitation 

represented stable tendencies vs. patterns incidental to a single experimental session. 

Replication study 

Procedures of the replication study were similar, but no MEG data were collected. Participants 

completed 240 trials of the clock task in two runs. Only IEV and DEV contingencies were employed. To 
dissociate value entropy from novelty, the contingency reversed every 40 trials unbeknownst to the 
participants. Trials were extended to 5s to accommodate slower psychomotor speed in this older 

sample.  

 

Imaging Acquisition and Processing Methods 

fMRI acquisition 

Neuroimaging data during the clock task were acquired in a Siemens Tim Trio 3T scanner for the 

original study and Siemens Tim Prisma 3T scanner for the replication study at the Magnetic 
Resonance Research Center, University of Pittsburgh. Due participant-dependent variation in 

response times on the task, each fMRI run varied in length from 3.15 to 5.87 minutes (M = 4.57 
minutes, SD = 0.52). Functional imaging data for the original/replication study were acquired using a 
simultaneous multislice sequence sensitive to BOLD contrast, TR = 1.0/0.6s, TE = 30/27ms, flip angle = 

55/45°, multiband acceleration factor = 5/5, voxel size = 2.3/3.1mm3. We also obtained a sagittal 
MPRAGE T1-weighted scan, voxel size = 1/1mm3, TR = 2.2/2.3s, TE = 3.58/3.35ms, GRAPPA 2/2x 

acceleration. The anatomical scan was used for coregistration and nonlinear transformation to 
functional and stereotaxic templates. We also acquired gradient echo fieldmap images (TEs = 
4.93/4.47ms and 7.39/6.93ms) for each subject to mitigate inhomogeneity-related distortions in the 

functional MRI data. 

Preprocessing of fMRI data 

Anatomical scans were registered to the MNI152 template76 using both affine (ANTS SyN) and 

nonlinear (FSL FNIRT) transformations. Functional images were preprocessed using tools from NiPy77, 
AFNI (version 19.0.26)78, and the FMRIB software library (FSL version 6.0.1)79. First, slice timing and 
motion coregistration were performed simultaneously using a four-dimensional registration algorithm 

implemented in NiPy80. Non-brain voxels were removed from functional images by masking voxels 
with low intensity and by the ROBEX brain extraction algorithm81. We reduced distortion due to 
susceptibility artifacts using fieldmap correction implemented in FSL FUGUE. 

Participants’ functional images were aligned to their anatomical scan using the white matter 

segmentation of each image and a boundary-based registration algorithm82, augmented by fieldmap 
unwarping coefficients. Given the low contrast between gray and white matter in echoplanar scans 
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with fast repetition times, we first aligned functional scans to a single-band fMRI reference image with 
better contrast. The reference image was acquired using the same scanning parameters, but without 
multiband acceleration. Functional scans were then warped into MNI152 template space (2.3mm 

output resolution) in one step using the concatenation of functional-reference, fieldmap unwarping, 
reference-structural, and structural-MNI152 transforms. Images were spatially smoothed using a 5mm 
full-width at half maximum (FWHM) kernel using a nonlinear smoother implemented in FSL SUSAN. 

To reduce head motion artifacts, we then conducted an independent component analysis for each run 
using FSL MELODIC. The spatiotemporal components were then passed to a classification algorithm, 

ICA-AROMA, validated to identify and remove motion-related artifacts83. Components identified as 
noise were regressed out of the data using FSL regfilt (non-aggressive regression approach). ICA-
AROMA has performed very well in head-to-head comparisons of alternative strategies for reducing 

head motion artifacts84. We then applied a .008 Hz temporal high-pass filter to remove slow-
frequency signal changes85; the same filter was applied to all regressors in GLM analyses. Finally, we 
renormalized each voxel time series to have a mean of 100 to provide similar scaling of voxelwise 

regression coefficients across runs and participants. 

Treatment of head motion 

In addition to mitigating head motion-related artifacts using ICA-AROMA, we excluded runs in which 

more than 10% of volumes had a framewise displacement (FD) of 0.9mm or greater, as well as runs in 
which head movement exceeded 5mm at any point in the acquisition. This led to the exclusion of 11 
runs total, yielding 549 total usable runs across participants. Furthermore, in voxelwise GLMs, we 

included the mean time series from deep cerebral white matter and the ventricles, as well as first 
derivatives of these signals, as confound regressors84. 

MEG Data acquisition 

MEG data were acquired using an Elekta Neuromag VectorView MEG system (Elekta Oy, Helsinki, 

Finland) in a three-layer magnetically shielded room. The system comprised of 306 sensors, with 204 
planar gradiometers and 102 magnetometers. In this project we only included data from the 

gradiometers, as data from magnetometers added noise and had a different amplitude scale. MEG 
data were recorded continuously with a sampling rate of 1000 Hz. We measured head position relative 

to the MEG sensors throughout the recording period using 4 continuous head position indicators 
(cHPI) that continuously emit sinusoidal signals, and head movements were corrected offline during 
preprocessing. To monitor saccades and eye blinks, we used two bipolar electrode pairs to record 

vertical and horizontal electrooculogram (EOG).  

Preprocessing of MEG data 

Flat or noisy channels were identified with manual inspections, and all data preprocessed using the 
temporal signal space separation (TSSS) method86,87. TSSS suppresses environmental artifacts from 

outside the MEG helmet and performs head movement correction by aligning sensor-level data to a 
common reference88. This realignment allowed sensor-level data to be pooled across subjects group 

analyses of sensor-space data. Cardiac and ocular artifacts were then removed using an independent 
component analysis by decomposing MEG sensor data into independent components (ICs) using the 
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infomax algorithm89. Each IC was then correlated with ECG and EOG recordings, and an IC was 
designated as an artifact if the absolute value of the correlation was at least three standard deviations 
higher than the mean of all correlations. The non-artifact ICs were projected back to the sensor space 

to reconstruct the signals for analysis. After preprocessing, data were epoched to the onset of 
feedback, with a window from -0.7 to 1.0 seconds.  Trials with gradiometer peak-to-peak amplitudes 
exceeded 3000 fT/cm were excluded. For each sensor, we computed the time-frequency 

decomposition of activity on each trial by convolving time-domain signals with Morlet wavelet, 
stepping from 2 to 40 Hz in logarithmic scale using 6 wavelet cycles. This yielded trial-level time-

frequency data that were amenable to multilevel models across frequencies and peri-feedback times. 

Computational Model of Behavior 

Core architecture of SCEPTIC reinforcement learning (RL) model 

The SCEPTIC model represents the one-dimensional space/time of the clock task using a set of 

unnormalized Gaussian radial basis functions (RBFs) spaced evenly over an interval T in which each 
function has a temporal receptive field with a mean and variance defining its point of maximal 

sensitivity and the range of times to which it is sensitive, respectively (a conceptual depiction of the 
model is provided in Figure 1). The primary quantity tracked by the basis is the expected value of a 

given choice (response time; we use the intuitive term value for continuity with prior studies of PPC 
maps 25,26,53, however since this estimate does not converge on the true reward rate, it is technically a 
preference, see text following eq. 7). To represent time-varying value, the heights of the basis 

functions are scaled according to a set of B weights, � � ���, ��, … , ���. The contribution of each 
basis function to the integrated value representation depends on its temporal receptive field: 

 ����� �  exp 
� �� � ����
2��� �  (1) 

where x is an arbitrary point within the time interval T, ��  is the center (mean) of the RBF and 	�
� is its 

variance. And more generally, the temporally varying expected value function on a trial i is obtained 

by the multiplication of the weights with the basis: 

 ���� � � �������

�

���

 

(2) 

For the clock task, where the probability and magnitude of rewards varied over the course of four-
second trials, we spaced the centers of 24 Gaussian RBFs evenly across the discrete interval and chose 

a fixed width, 	�
�, to define the temporal variance (width) of each basis function. More specifically, 	�

� 
was chosen such that the distribution of adjacent RBFs overlapped by approximately 50% (for details 

and consideration of alternatives, see20). 

The basic model, referred to as traditional RL in Results, learns the expected values of different 

response times by updating each basis function b according to the equation:  

 ���� � 1� �  ����� � ����|����reward��|�� � ������ (3) 

 where i is the current trial in the task, t is the observed response time (aka RT), and reward��|�� 
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is the reinforcement obtained on trial i given the choice t. Prediction error updates are weighted by 
the learning rate � and the temporal generalization function or eligibility e. To avoid tracking separate 
value estimates for each possible moment, feedback obtained at a given response time t is 

propagated to adjacent times. Thus, to implement temporal generalization of expected value 
updates, we used a Gaussian RBF centered on the response time t, having width 	�

�. The eligibility ��  

of a basis function ��  to be updated by prediction error is defined as its overlap with the temporal 
generalization function, g: 

 
 ��� �  exp 
� �� � ���

2��� �  
 

(4) 

 ����|�� � ! min ��

�

 �%�, ���%��'% (5) 

where � represents an arbitrary timepoint along the interval T. Thus, for each RBF b, a scalar 

eligibility ��  between zero and one represents the proportion of overlap between the temporal 
generalization function and the receptive field of the RBF90. In the case of complete overlap, where 
the response time is perfectly centered on a given basis function, ��  will reach unity, resulting a 

maximal weight update according to the learning rule above. Conversely, if there is no overlap 
between an RBF and the temporal generalization function, ��  will be zero and that RBF will receive no 
update. Importantly, for the eligibility to be bounded on interval [0,1], the basis functions are each 

normalized to have an area under the curve of unity (i.e., representing probability density). Here, we 

also fixed the width of the generalization function to match the basis (i.e., 	�
� � 	�

�). 

The SCEPTIC model selects an action based on a softmax choice rule, analogous to simpler 
reinforcement learning problems (e.g., two-armed bandit tasks 91). For computational speed, we 

arbitrarily discretized the interval into 100ms time bins such that the agent selected among 40 
potential responses (i.e., a multinomial representation). At trial � the agent chooses a response time in 

proportion to its expected value: 

 (���� � 1� � )|����� �  exp �����	/+�
∑ exp �����
/+��

��

 (6) 

where j is a specific response time and the temperature parameter � controls value sensitivity 
such that choices became more stochastic and less value-sensitive at higher � values. 

Information-compressing RL with selective maintenance 

Importantly, as detailed previously20, a model that selectively maintained frequently chosen, 

preferred actions far outperformed model alternative models. Specifically, basis weights 

corresponding to non-preferred, spatiotemporally distant actions revert toward a prior in inverse 
proportion to the temporal generalization function: 

 ���� � 1� �  ����� � ����|����reward��|�� � ������ � -.1 � ����|��/������ � 0� (7) 

where � is a selective maintenance parameter between zero and one that scales the degree of 
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reversion toward a point h, which is taken to be zero here for parsimony, but could be replaced with an 
alternative prior expectation. Our primary fMRI analyses used signals derived from fitting the 
information-compressing RL model (eq. 7) to participants’ behavior, while comparisons with 

traditional RL used the model with the learning rule described in equation 3. Two features supported 
by computational studies and tests against human behavior20, (i) the decay in the weights of unchosen 
alternatives (eq. 7) and (ii) calculation of prediction errors based on individual element weights �� (eq. 

3, 7) rather than the total value estimate ���� (eq. 2) preclude �� or ���� from converging on the true 
reward rate. While we refer to �� as expected values for continuity with previous studies of the parietal 

cortex25,26,53, ��  are closer to preferences in policy gradient algorithms22,92,93. Here, we focus on 
testing the hypothesis of information compression (eq. 8) and make no strong claims about whether 
representations of reinforcement in PPC constitute expected values or preferences. Although taken 

together with our earlier behavioral and computational results, neural model comparisons reported 
here can be taken to favor the preferences hypothesis, a definitive adjudication will require new 
experiments. Value vs. policy learning accounts are not necessarily mutually exclusive since actor-

critic algorithms combine both approaches.   

As detailed in the Results, we defined the information content of the learned value distribution as 

Shannon’s entropy of the normalized basis weights (the trial index i is omitted for simplicity of 
notation): 

 1�2� �  � � ��

�

���

log������ (8) 

We further sought to examine whether entropy responses in the dorsal attention network were 

consistent with the information-compressing selective maintenance model. To test the specificity of 
the representation, we conducted analyses using entropy calculated from the information-

compressing SCEPTIC selective maintenance model (equation 7) vs. entropy from a traditional RL, 
full-maintenance counterpart that did not decay the values of unchosen actions (equation 3; detailed 
model comparisons provided in20). 

Working memory model 

We argue that information dynamics attributable to value entropy from the SCEPTIC information-

compressing model best explain the exploration-exploitation transition in behavior and updates to the 

value map in the DAN. Yet, one could imagine that that the DAN relies solely on a spatial working 
memory representation with a buffer containing locations and outcomes of recent choices. In turn, the 
information content of this buffer might be sufficient to explain DAN BOLD activity. 

We first examined whether a WM process alone is sufficient to explain human choices without 
invoking information-compressing RL. We used a multi-level regression model as described below 

(Brain-behavior fMRI analyses using regression coefficients from model-based fMRI GLM analyses) to 
predict the participant’s current RT with k preceding RTs representing the selection history buffer and 

their interactions with reward/omission representing the outcome buffer. This analysis revealed no 
effect of outcomes beyond 4 trials (Supplementary Table 4).To assess the effect of the more remote 
reinforcement history not captured by the last k choices and outcomes, we then tested the 
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incremental contribution of the RTVmax (time of the learned value maximum) derived from the 
SCEPTIC model. 

To conduct a conclusive test of this alternative account, we created a strong working memory-only 

comparator model that adopted the SCEPTIC RBF representation, using the basis weights to store the 
buffer of recently chosen locations, alongside a separate vector of recent outcomes. Specifically, the 

model remembered the past k choices by placing a unit-height eligibility functions at these locations 
and taking the sum, forming a selection history function, s(x). k was empirically estimated as 4 using 

multi-level linear regression (Supplemental Table 4). In turn, this representation of selection history 
was combined with the RBF by multiplying the selection history function and basis, yielding working 

memory basis weights ��
��  whose height scaled with the selection history. 

 ���� �  � exp 
� �� � ��)���
2��� �

�
�

	��
�

 (9) 

 ��
����� � ! ���%� ���%��

�

�'% (10) 

 

where i represents the current trial and t(j) is the response time on the ith previous trial. In turn, 

entropy can be calculated on the selection history basis weights in the same fashion as in the regular 
SCEPTIC model (Equation 8). Outcome history was simply represented by a vector o containing 1s for 
rewards and 0s for reward omissions in the past four trials. This implementation did not require 

estimating free parameters from behavior. Thus, total entropy or information content of working 
memory ��� is the joint entropy of the selection and outcome buffers: 

 1�����
�� �  1�2� + 1�6� (11) 

 

Fitting of SCEPTIC model to behavioral data 

SCEPTIC model parameters were fitted to individual choices using an empirical Bayesian version of 

the Variational Bayesian Approach94. The empirical Bayes approach relied on a mixed-effects model in 
which individual-level parameters were assumed to be sampled from a normally distributed 
population. The group’s summary statistics, in turn, were inferred from individual-level posterior 

parameter estimates using an iterative variational Bayes algorithm that alternates between 
estimating the population parameters and the individual subject parameters. Over algorithm 

iterations, individual-level priors are shrunk toward the inferred parent population distribution, as in 
standard multilevel regression. Furthermore, to reduce the possibility that individual differences in 
voxelwise estimates from model-based fMRI analyses reflected differences in the scaling of SCEPTIC 

parameters, we refit the SCEPTIC model to participant data at the group mean parameter values. This 
approach supports comparisons of regression coefficients across subjects and reduces the 
confounding of brain-behavior analyses by the individual fits of the computational model to a 

participant’s behavior. We note, however, that our results were qualitatively the same when model 
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parameters were free to vary across people (additional details available from the corresponding 
author upon request). 

fMRI analyses 

Voxelwise fMRI general linear model analyses 

Voxelwise general linear model (GLM) analyses of fMRI data were performed using FSL version 
6.0.479. Single-run analyses were conducted using FSL FILM, which implements an enhanced version 

of the GLM that corrects for temporal autocorrelation by prewhitening voxelwise time series and 
regressors in the design matrix85. For each design effect, we convolved a duration-modulated unit-

height boxcar regressor with a canonical double-gamma hemodynamic response function (HRF) to 
yield the model-predicted BOLD response. All models included convolved regressors for the clock and 
feedback phases of the task.  

Moreover, GLM analyses included parametric regressors derived from SCEPTIC. For each whole-brain 
analysis, we added a single model-based regressor from SCEPTIC alongside the clock and feedback 

regressors. Results were qualitatively unchanged, however, when all SCEPTIC signals were included as 
simultaneous predictors, given the relatively low correlation among these signals. For each model-

based regressor, the SCEPTIC-derived signal was mean-centered prior to convolution with the HRF. 
The reward prediction error and entropy change signals were aligned with the feedback, whereas 
entropy was aligned with the clock (decision) phase. Furthermore, for regressors aligned with the 

clock phase, which varied in duration, we sought to unconfound the height of the predicted BOLD 
response due to decision time from the parametric influence of the SCEPTIC signal. Toward this end, 
for each trial, we convolved a duration-modulated boxcar with the HRF, renormalized the peak to 

unity, multiplied the regressor by the SCEPTIC signal on that trial, then summed across trials to derive 
a single model-based regressor (cf. processing time versus intensity of activation in95). 

Parameter estimates from each run were combined using a weighted fixed effects model in FEAT that 
propagated error variances from the individual runs. The contrasts from the second-level analyses 

were then analyzed at the group level using a mixed effects approach implemented in FSL FLAME. 
Specifically, we used the FLAME 1+2 approach with automatic outlier deweighting96, which 
implements Bayesian mixed effects estimation of the group parameter estimates including full 

Markov Chain Monte Carlo-based estimation for near-threshold voxels97. To identify statistical 
parametric maps that best represented the average response, all group analyses included age and sex 

as covariates of no interest (esp. given the developmental sample). 

Although our analyses focus primarily on the dorsal attention network (DAN) as the a priori network of 

interest, we nevertheless conducted whole-brain corrections to the voxelwise GLM statistics to 
examine the pattern of activity for the signals of interest. Specifically, to correct for familywise error at 
the whole-brain level, we applied the probabilistic threshold-free cluster enhancement methods pTFCE; 

98, thresholding whole-brain maps at FWE p < .05 (e.g., Figure 2B). This algorithm provides strict 
control over familywise error and boosts sensitivity to clusters of activated voxels. 

Brain-behavior fMRI analyses using regression coefficients from model-based fMRI GLM analyses 
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To relate individual differences in entropy- and entropy change-related BOLD modulation to behavior 

on the clock task, we extracted subject-level parameter estimates for these GLM contrasts from each 
of the 47 DAN parcels defined by the Schaefer cortical parcellation see Table s1; ,34. These parameter 

estimates (aka “betas”) served as individual difference measures of sensitivity to signals from SCEPTIC 
— particularly entropy and entropy change — across regions in the DAN. 

We then entered DAN betas for SCEPTIC entropy change as a cross-level moderator of trial-level 

effects in multilevel models of behavior. Specifically, the dependent variable was trial-wise RT (choice) 

with behavioral variables as predictors. All models included the trial (inverse-transformed) and 
previous reward as covariates. Models also included the influence of previous choice (RTt-1) on current 
choice (RTt), or RT autocorrelation. A weaker autocorrelation indicates larger exploratory RT swings, 

and variables that decrease autocorrelation are considered to increase exploration. Most models 
included DAN entropy change betas as cross-level moderators of the RTt-1 effect as a test of how 
sensitivity to updates in the number of good options modulated exploration on the task. Likewise, 

most multilevel models also included the trial-varying location of the best option, RTVmax. The two-
way interaction of RTVmax and DAN entropy change betas tests whether sensitivity to entropy change 

enhances or diminishes exploitation of the best option. 

Because our behavioral observations had a clustered structure (i.e., trials nested within subjects), we 

used multilevel regression models, which were estimated using restricted maximum likelihood in the 
lme4 package99 in R 4.2.0100. Estimated p-values for predictors in the model were computed using 
Wald chi-square tests and degrees of freedom were based on the Kenward-Roger approximation. For 

trial-level analyses, subject and run were treated as random and random intercepts were included for 
these factors. Additionally, as noted in Results, we included random slopes of key terms such as RTVmax 

and RTt-1 to ensure the robustness of DAN modulation of exploitation and exploration101. 

Within-trial mixed-effects survival analyses of behavior with time-varying value estimates 

To examine the sensitivity of choices to within-trial time-varying value, we performed survival 
analyses predicting the temporal occurrence of response. These mixed-effects Cox models (R coxme 

package)102 estimated response hazard as a function of model-predicted expected value and their 
interaction with session-level DAN responses. This survival analysis does not assume that one pre-

commits to a given response time, instead modeling the within-trial response hazard function in real, 
continuous time, accounts for censoring and allows for a completely general baseline hazard 
function103. The survival approach accounts for censoring of later within-trial time points by early 

responses. Most importantly, it allows for a completely general baseline hazard function that can vary 
randomly across participants. We thus avoid assumptions about the statistical distribution of response 
times and account for trial-invariant influences such as urgency, processing speed constraints or 

opportunity cost. We also modeled only the 1000 – 3500 ms interval, excluding early response times 
that may be shorter than the deliberation and motor planning period and the end of the interval which 

one may avoid in order to not miss responding on a trial. We included learned value from the 
information-compressing model as a time-varying covariate, sampled every 100 ms. To account for 
between-persons heterogeneity, person-specific intercept was included as a random effects; 

sensitivity analyses also included the random slope of the predictor of interest (value). 
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Analyses of within-trial peri-feedback BOLD responses using voxelwise deconvolution 

Although betas from fMRI GLMs provide a useful window into how decision signals from SCEPTIC 

relate to behavior at the level of an entire session, the GLM approach makes a number of 
assumptions: a) that one correctly specifies when in time a signal derived from a computational model 
modulates neural activity, b) that there is a linear relationship between the model signal and BOLD 

activity, and c) that a canonical HRF describes the BOLD activity corresponding to a given model-
based signal. Furthermore, a conventional model-based fMRI GLM does not allow one to interrogate 

whether the representation of a given cognitive process varies in time over the course of a trial. For 
these reasons, we conducted additional analyses that could provide a detailed view of how DAN 
activity changes following feedback on each trial of the clock task. These analyses also attempted to 

overcome statistical and conceptual limitations of the GLM and to provide an index of within-trial 
neural activity that was independent of our computational model. That is, in these analyses, within-
trial BOLD activity is the dependent variable and parameters from the SCEPTIC model are predictors. 

We first applied a leading hemodynamic deconvolution algorithm to estimate neural activity from 

BOLD data104. This algorithm has performed better than alternatives in simulated and real fMRI data, 
and it is reasonably robust to variations in the timing of neural events and the sampling frequency of 
the scan105. We deconvolved the voxelwise BOLD activity for all subjects, averaged the deconvolved 

time series within each of the 47 DAN parcels (Table s1), and retained these as a regions x time matrix 
for each run of fMRI data. 

Then, to estimate neural activity for each trial in the experiment, we extracted the deconvolved signal 

surrounding feedback onset (-4 to +4 seconds), censoring timepoints that intersected the previous or 

next trials. Finally, to ensure that discrete-time models of neural activity could be easily applied, we 
resampled deconvolved neural activity onto an evenly spaced grid aligned to the feedback onset using 
linear interpolation. The sampling frequency of the feedback-aligned deconvolved signals was 

matched to the TR of the fMRI scan (1s for the original sample and 0.6s for the replication sample). 
Thus, this interpolation was a form of resampling, but did not upsample or downsample the data in 
the time domain. 

For each subject, this yielded a 400 trial x 9 time point (-4—4s for the main sample) x 47 region matrix. 

We then concatenated these matrices across participants for group analysis. Our primary analyses 
focused on the four parcels of the DAN visuomotor gradient (MT+, Caudal PPC, Rostral PPC, 
Premotor), rather than analyzing each region separately. Within each time x parcel combination, we 

regressed trial-wise neural activity on key decision variables in a multilevel regression framework 
implemented in lme499 in R, allowing for crossed random intercepts of subject and side (right/left). 
Within this framework, the regression coefficients provide an estimate of when and in what region key 

signals such as entropy change are associated with feedback-related changes in neural activity. 
Critically, however, given the temporal smoothness of BOLD data, the deconvolved signals remain 

highly autocorrelated and we are cautious about overinterpreting the temporal precision of these 
analyses. Moreover, this temporal (and potentially spatial) association results in non-independent 
statistical tests across the set of space x time models. To adjust for multiple comparisons in non-

independent models, we applied the Benjamini–Yekutieli correction across terms of interest in these 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2023. ; https://doi.org/10.1101/2023.05.22.541828doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.22.541828
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

models to maintain a false discovery rate of .05106. 

Another advantage of this analytic approach is that alternative models of representation and behavior 

can be compared in terms of their alignment to neural activity in fMRI. More specifically, each 
multilevel model across the space x time set of models yields global fit measures such as the Akaike 
Information Criterion (AIC), which can be used to compare the relative fit of cognitive signals (e.g., 

entropy change) to event-aligned BOLD data. Here, we used a global model selection approach107 
based on the AIC to compare the fit of information-compressing, traditional RL, and working memory 

accounts of the clock task to activity in the DAN (Figure 3). 

MEG Analyses 

Multi-level analyses of time-frequency domain MEG data 

The goal of these analyses was to estimate how reinforcement modulated oscillatory power at each 

within-trial timepoint and each frequency. To estimate this effect accurately and robustly across 
sensors and individuals, we used high-performance parallel computing to fit one multi-level linear 

model for each point in this time-frequency space, combining data from all trials, individuals, and 
sensors. Predictors included the SCEPTIC model-derived entropy change signal and behavioral 

confounds: current and previous response times, reward/omission, trial and, in sensitivity analyses, 
the KL distance between the last and three preceding response times to account for stochastic choice 
histories. Subject and sensor were treated as crossed random effects, with sensor-specific random 

intercepts and random slopes of the behavioral variable of interest and subject-specific random 
intercepts and, where indicated, random slopes of the variable of interest. Since our contrasts were 
between trials, the intercept accounted for marginal oscillatory power at a given time-frequency 

point, and correction for baseline was not necessary. Models were estimated using restricted 
maximum likelihood in the lme4 package99 in R 4.2.0100. Estimated p-values for predictors in the model 

were computed using Wald chi-square tests and degrees of freedom were based on the Kenward-
Roger approximation. To examine the anatomical distribution of effects, after obtaining estimates for 
each subject and sensor within this overall model, we projected them into the sensor space (Figure 5C) 

and source space (Figure 5D) as follows. 

Source location was performed using the linearly constrained minimum variance (LCMV) Beamformer 

procedure108. We used Freesurfer’s “fsaverage” template source space and sensor-to-template 
registration provided by the MNE software109. The forward model was calculated using the single-

layer boundary element, for a total of 20,484 potential source locations placed with 5 mm spacing on 
the fsaverage surface. A spatial filter was then constructed using a unit-gain LCMV Beamformer108, 
with covariances estimated using the 1-second window from the peristimulus interval and 1-second 

window after the feedback presentation, across all trials and all subjects. We applied the filter to 
project sensor-level group statistics to the source space. Source estimates were thresholded from 

20th to 95th percentiles. 

Our analyses of the relationship between subject-level oscillatory responses and behavioral 

exploration/exploitation employed multi-level survival models identical to those described above 
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(fMRI Analyses, Within-trial mixed-effects survival analyses of behavior with time-varying value 

estimates). 
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