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Abstract 

Background: Borderline Personality Disorder (BPD) symptoms often emerge in adolescence. However, little is 

known about the functional organization of intrinsic brain networks in young people with BPD symptoms.  

Methods: In this study we collected resting-state fMRI data in a sample of adolescents and young adults with 

(nBPD = 40) and without BPD (nHC= 42) symptoms. Using a detailed cortico-limbic parcellation coupled with 

graph theoretical analyses, we tested for group and age-related differences in regional functional and effective 

connectivity (FC, EC) and amplitude of low frequency fluctuations (ALFF). We conducted a series of analyses 

that progressed from global network properties to focal tests of EC amongst nodes in Salience (SN) and Dorsal 

Attention Networks (DAN).  

Results: At the regional level, regularized regression analyses revealed a broad pattern of hyper-connectivity 

and heightened ALFF in R dorsal anterior insula (daIns), in addition to hypoconnectivity in R temporal-parietal 

junction (TPJ) and decreased ALFF in multiple DAN regions. Furthermore, analyses of EC amongst daIns, TPJ, 

and DAN revealed that in BPD participants daIns exerts a heightened influence on TPJ and DAN regions. 

Finally, multivariate mediation models indicated that lower DANALFF was differentially predicted by EC from 

TPJ and daIns.  

Conclusions: Our findings provide converging evidence that heightened EC from daIns impairs network-wide 

ALFF in DAN both directly and indirectly via impaired TPJ functioning. We interpret this pattern of findings in 

line with an “attentional hijacking” account of borderline personality.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.08.503183doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.08.503183
http://creativecommons.org/licenses/by-nd/4.0/


RUNNING HEAD: INSULA EFFECTIVE CONNECTIVITY IN BPD 
 

3

Right anterior insula effective connectivity impairs intrinsic BOLD fluctuations in dorsal attention 

network in adolescents and young adults with borderline personality symptoms 

Symptoms of Borderline Personality Disorder (BPD) such as emotion dysregulation and nonsuicidal 

self-injury typically emerge in adolescence (1,2). Although the maturation of circuits underlying emotion 

regulation and cognitive control is remarkable during this period (3), little is known about macroscale functional 

brain organization in young people with BPD symptoms. The current study investigated interactions among 

intrinsic connectivity networks in adolescents and young adults with BPD symptoms using three major BOLD 

indices of resting-state brain function: functional and effective connectivity (FC and EC, respectively) and 

regional amplitude of low-frequency fluctuations (ALFF; 4–6). Through a series of analyses that progress from 

broad network properties to focal tests of the relation between ALFF and EC in specific networks, we show that 

heightened resting-state effective connectivity of the R dorsal anterior insula (daIns) in BPD impairs ALFF in 

the Dorsal Attention Network (DAN). 

 Our study builds on evidence from developmental neuroscience that the organization of the brain into 

distinct networks (aka “modules”) is well-established by late childhood, though connectivity patterns amongst 

these networks undergoes a protracted refinement in adolescence (7–9). By late childhood, intrinsic networks 

have segregated (i.e., increased within-network connections), establishing the functional specializations of each 

network (9–11). However, during adolescence, functional integration among networks facilitates widespread 

communication via “connector hub” regions that serve as highways of between-network communication, which 

may underlie adolescence-related improvements in behavioral performance (8).  

 Crucially, in adolescence, the Salience Network (SN; 12,13) undergoes substantial changes in between-

network connectivity compared to other intrinsic networks (8,14). SN is composed primarily of dorsal anterior 

cingulate (dACC) and aIns and plays a key role in detecting and orienting attention to stimuli that are 

behaviorally relevant or perceptually salient (12,15). A recent taxonomy of intrinsic networks expanded SN to 

include right temporal-parietal junction (TPJ) and inferior frontal gyrus (IFG) as well as numerous subcortical 

regions (16).  SN is thought to organize dynamic switches among task-positive networks (DAN, Fronto-Parietal 
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Networks) and the task-negative Default Mode Networks (DMN; 15,17–19). In other words, SN monitors both 

internal and external events and triggers the appropriate networks to come online to implement either higher-

order cognitive functions (DAN, FPN) or self-reflective internally directed thought (DMN). Within SN, the 

insula is a multimodal hub of cognitive-emotional functioning that receives sensory, cognitive, and homeostatic 

inputs; its integration of these signals facilitates flexible decision-making (13,20–22). More importantly, 

numerous studies of insula EC converge on its role as a central “outflow hub”; its widespread projections to 

cortex suggest a unique ability to control macroscale brain dynamics (18,19). 

Given SN’s involvement in a wide array of socio-cognitive and emotional processes and its protracted 

development in adolescence, it has become a key target in understanding the emergence of psychopathology 

(23–27). However, SN functioning in adolescents and young adults with BPD symptoms is poorly understood. 

Task-based fMRI studies of BPD have implicated a diverse set of regions involved in cognitive control, 

emotion regulation, and social cognition (28–32). However, few studies of intrinsic connectivity in adults with 

BPD have focused on SN (33–35). These studies have provided promising, though mixed, results regarding SN 

connectivity in borderline personality1. For example, two connectivity studies using ICA reported contradictory 

results: one found greater SN-DMN connectivity in BPD, while the other reported decreased SN-DMN 

connectivity (33,34).  

This contradiction notwithstanding, there is good reason to believe that aberrant segregation and/or 

integration of DMN, SN, and task-positive networks may be associated with the expression of BPD symptoms. 

An influential “triple network model” of psychopathology argues that disrupted interactions among these 

networks likely contribute to the pathophysiology of numerous psychiatric disorders (23). This model posits 

that aberrant salience signals computed in aIns project to DMN and fronto-parietal regions, with major 

downstream effects on the cognitive processes implemented by these networks. For example, 

hyperactivity/connectivity of the aIns has been proposed to support heightened interoceptive prediction signals 

                                                       

1 For a summary of findings from all published rsFC studies of adults with BPD we refer the interested reader to Table S1. 
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in anxiety (36), while hypoactivity of the aIns may underlie weakened salience mapping to social stimuli in 

autism (27,37).  

Although SN likely plays an important role in psychopathology (38), the role of SN’s connectivity with 

other networks and/or aberrant functioning of specific brain regions within SN remain topics of active inquiry in 

clinical studies. From the perspective of the triple network model, interpersonal hypersensitivity and volatile 

emotionality in BPD can be understood in terms of heightened salience mapping, with corresponding activity 

and connectivity of core SN regions. These salience signals would likely disrupt networks involved in planning 

and goal-directed behavior (FPN) and self-referential thought (DMN). Importantly, this model does not 

distinguish between task-positive networks involved in cognitive control and attentional control [FPN, DAN 

respectively; 38]. In a separate line of research, regions in SN have been shown to dynamically interact with 

parietal regions in DAN by generating attentional reorienting signals that interrupt transient attentional 

processing in DAN (40). However, aberrant communication between SN and DAN has received little attention 

in clinical neuroimaging studies.  

Studies of SN in BPD have reported broad abnormalities, yet they have not clarified whether aberrant 

SN function is localized to specific regions, reflects interactions among SN regions, or may be a network-level 

phenomenon involving SN’s coordination with other networks. Moreover, essentially no prior studies of BPD 

have characterized the functioning of intrinsic networks within a graph theoretical framework, the preferred 

analytic approach in network neuroscience (41,42). Graph theory represents networks in terms of regions 

(‘nodes’) and connections amongst regions (‘edges’) and offers a broad palette of metrics/analytic approaches 

that quantify an array of network properties. Importantly, these network properties can be conceptualized in 

terms of telescoping levels of analysis (43), from global (average connection strength across the entire network) 

to highly specific (edge characteristics between two nodes). Furthermore, while most connectivity studies in 

BPD focus on FC (undirected/correlational connectivity), modern EC models support inferences about the 

directionality of connectivity amongst regions (44–46). In a prior report, we investigated BPD-related 

differences in EC of amygdala subnuclei and targeted regions in mPFC (47), building on evidence of fronto-
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limbic dysfunction in BPD (28,48,49). Here, we significantly broadened our scope to a whole-brain 

connectivity analysis, placing a particular emphasis on intrinsic activity and connectivity of SN and its 

constituent regions.  

While connectivity analyses reveal features of the brain’s functional network architecture, they provide 

less information about the magnitude of intrinsic activity. Markers of intrinsic activity provide information on 

the functional integrity of synchronized neural activity in a brain region. For example, FDG-PET studies have 

found a pattern of glucose hypometabolism in the medial PFC in BPD patients, suggesting abnormalities in the 

functioning of this region (50). In fMRI data, ALFF is a measure of the amplitude of low-frequency BOLD 

oscillations [0.01-0.1 Hz; 51], approximating the resting-state activity of a region (52). More specifically, basic 

studies of ALFF suggest a positive linear relationship between ALFF and glucose metabolism (53) and an 

inverse linear relationship between ALFF and GABA levels (54). Although ALFF provides an indirect index of 

regional intrinsic activity2, to our knowledge no studies have focused on how connectivity between regions or 

networks may impair or bolster ALFF.  

In a sample of adolescents and young adults with and without BPD symptoms, we examined whole-

brain intrinsic connectivity using graph theoretical network measures and tested how connectivity patterns 

amongst these intrinsic networks are related to regional ALFF. As detailed below, our results suggest that in 

adolescents and young adults with BPD symptoms, the right dorsal aIns (daIns) is hyperactive (heightened 

ALFF) and exhibits a strengthened directed influence on DAN, which impairs network-level activity in DAN.  

Materials and Methods 

Participants 

 A thorough description of the current sample, including exclusion due to low rs-fMRI data quality is 

reported elsewhere (47; see Supplemental Materials). In short, we retained a final sample of 82 age- and sex-

                                                       

2 Throughout the rest of this paper, we use ALFF and “resting-state activity” interchangeably, though we encourage readers to keep in 
mind that this perhaps a rough equivalence.   
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matched adolescents and young adults (nBPD = 40, mean age = 20.53, age range 13-30) with and without 

clinically heightened BPD symptoms. Detailed demographic information can be found in Table 1.  

 Procedure 

 Participants completed two semi-structured diagnostic interviews assessing psychopathology and 

personality disorder symptoms (55,56). Interviews were administered by research assistants trained and 

supervised by the senior author. Participants in the BPD group met diagnostic criteria for three or more of the 

DSM-IV-TR BPD symptoms (47,57). Exclusionary criteria included having a first-degree relative diagnosed 

with Bipolar I disorder or any psychotic disorder and a history of serious head injury or neurological disease. In 

addition, control participants had no history of psychiatric or substance abuse disorders.  

 Prior to the RS-fMRI session, participants completed a battery of self-report measures including the 

Borderline Personality Questionnaire (BPQ; 58).  The BPQ is an 80-item self-report measure which measures 

the various BPD symptom dimensions based on the nine DSM criteria. Internal consistency among these scales 

was good to excellent in our sample (αBPQ = 0.97, mean subscale α BPQ = 0.86). 

MR Data Acquisition  

 Data were acquired using a Siemens 3T Tim Trio scanner with a 32-channel head coil at the University of 

Pittsburgh Medical Center. We collected five minutes of resting-state fMRI data during which subjects were 

asked to keep their eyes open and relax, but not fall asleep. We used a simultaneous multi-slice echo-planar 

sequence sensitive to BOLD contrast with scanning parameters: TR = 1.0s, TE = 30ms, FoV = 220 mm, flip 

angle = 55°, voxel size = 2.3mm isotropic, 5x multiband acceleration. We confirmed that no subjects fell asleep 

with a self-report questionnaire administered after the scanning protocol. 

RS-fMRI Preprocessing Procedures 

 RS-fMRI preprocessing was conducted within FSL, NiPy, and AFNI. Structural scans were registered to 

the MNI152 template (59) using affine and nonlinear transformations conducted in FSL. Functional image 

preprocessing included simultaneous 4-D motion and slice-timing correction (60), brain extraction, alignment of 
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subject’s functional images to their anatomical scan using a boundary-based registration algorithm (61), and a 

one-step nonlinear warp to MNI152 space that concatenated functional-to structural, structural-to-MNI152, and 

fieldmap unwarping transformations. To mitigate motion-related artifacts we used ICA-AROMA (62), a data-

driven classification algorithm that identifies and removes spatiotemporal components likely to reflect head 

movement. RS-fMRI data were not spatially smoothed for analysis (Supplemental Methods; ,63). 

Analytic Approach 

Whole-brain Functional Connectivity and ALFF Analyses  

 We performed whole-brain FC analyses (see Supplemental Methods for details) to identify resting-state 

network signatures of BPD across levels of the network. We first constructed undirected FC matrices among 

421 regions/nodes using a custom-built parcellation covering cortex, striatum, thalamus, and amygdala [43, 64–

66; see Fig S2]. Given our interest in network segregation and integration, nodes were assigned to either the 

default mode (DMN), fronto-parietal (FPN), salience (SN), dorsal attention (DAN), sommato-motor (SomMot), 

visual (Vis), or cortico-limbic network (Limbic), based on the previously validated modular structure of the 

cortical and striatal parcellations (64,65,67).  

 To test for group differences in global FC and ALFF, we compared the strength centrality and global 

ALFF distributions of the two groups using mixed-effects regression (see Supplemental Methods). We 

calculated graph measures of global FC (modularity, characteristic path length, transitivity, global efficiency, 

diameter) and fit separate regression models predicting global graph metrics by group membership, age, and 

their interaction. We then computed nodal FC measures and ALFF for all brain regions (see Supplemental 

Methods). In a series of nine logistic ridge regression models, we tested which regional connectivity measures 

were the most potent predictors of group status; these analyses included graph measures for each region as 

simultaneous predictors (see Supplemental Methods). Nodal measures included strength centrality, seven 

separate network-specific strength centrality (NSSC) scores, and ALFF. The NSSC measures corresponded to 

intra- and inter-network FC with specific networks. For nodal logistic ridge regression analyses we set a 
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conservative alpha level of .005. 

 As detailed below, we found strong evidence for widespread hyperconnectivity of the R daIns in BPD. 

This result motivated a post-hoc analysis on all edges incident to this region, testing for edges with significant 

group or group-by-age effects. The focal edge analysis provided a more fine-grained test of which edges 

contributed most to group differences in summary statistics such as nodal centrality. Specifically, in a logistic 

ridge regression, we regressed group status on incident edge values and their interactions with age.  

Effective Connectivity Among Target Regions  

Initial analyses revealed pivotal group differences in FC/ALFF in R daIns, TPJ, and several (primarily 

parietal) DAN regions. Subsequent analyses sought to understand how these effects could be understood in 

terms of EC amongst these regions. We used the recently developed Latent Variable Group Iterative Multiple 

Model Estimation (LV-GIMME; 44,68,69) algorithm to estimate EC between R TPJ, daIns, and a latent 

variable capturing shared signal amongst DAN regions (see Supplemental Methods). We additionally allowed 

for subgroup-specific edges to be estimated based on clinical group status (69). After fitting LV-GIMME to 

nodal time series, we extracted model coefficients as group-level directed edge values and ran separate linear 

regressions testing for group and group-by-age effects in the strength of EC.   

Path Models Linking EC and ALFF 

Building on results from EC estimation, we tested whether the relationship between DANALFF
3 and 

daInsALFF/TPJALFF were mediated by EC between these regions4. For example, while daInsALFF and DANALFF 

levels showed an inverse pattern of group-level effects, we directly considered whether parametric increases in 

daIns daIns→DANEC inversely scales with DANALFF (which would demonstrate an “ALFF suppression” effect).     

                                                       

3 Given that ALFF effects in DAN were spread across a wide swath of parietal and frontal eye field regions (Fig S6, Table S3), we 
were more interested in a shared network-level score for ALFF. We fit a single factor EFA to ALFF scores amongst DAN regions 
with significant group differences and extracted factor scores to be used at the dependent variable in subsequent analyses. Details 
including bivariate correlations amongst DAN nodes and factor loadings are detailed in Supplemental Materials. 
4 For ease of communication, for the rest of the manuscript we denote effective connectivity between two regions with an arrow and 
“EC” subscript, and functional connectivity between two regions/networks with a dash and “FC” subscript (e.g. EC from daIns to 
DAN denoted as daIns→DANEC, where undirected FC is denoted daIns↔DANFC) 
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We fit three path models to these variables in Mplus using Bayesian parameter estimation (details in 

Supplemental Methods; 69–71). In the first two models (Fig. 2a-b), we fit parallel dual-mediation path models 

in which the relationship between daInsALFF/TPJALFF and DANALFF was mediated by both daIns/TPJ→DANEC 

and daIns/TPJ↔DANFC, respectively (Fig. 2a-b). The inclusion of FC and EC measures tested the specificity 

and predictive power of directed and undirected connectivity. In a final model (Fig. 2c), we tested whether TPJ-

related variables were predicted by daIns→TPJEC. This path model specifically adjudicated whether TPJALFF 

and/or TPJ connectivity were better explained as a downstream effect of daIns hyperactivity/connectivity. 

Associations with BPD Symptom Domains  

Finally, we tested which BPD symptom dimensions were uniquely associated with ALFF impairment in 

DAN. We fit a series of linear models using each BPQ subscale: ������� �  �� �  ���	
���	
� � ��ALFF
������� . 

However, we were more interested in the unique relevance of specific BPQ subscales given high associations 

among symptom domains (r’s > .7). To test conditional associations of BPQ subscales with DAN ALFF we fit a 

single multiple regression predicting levels of DAN ALFF by all subscales of the BPQ and average ALFF 

levels per subject5.  

Results 

Whole-brain functional connectivity and ALFF 

We found no evidence of significant group or group-by-age differences in global network characteristics 

(all p's > .05; Table S2, Figs S4-5). Nodal analyses, however, revealed an array of findings across intrinsic 

networks (Table S3, Fig S6). The primary goal of our nodal analyses was to determine group and group x age 

differences in FC/ALFF across regions.  

We identified three robust patterns in intrinsic network structure that discriminated the BPD group from 

the control group (Table S3, Fig S6). First, R dorsal aIns (daIns) showed strong, widespread hyperconnectivity 

                                                       

5
 This allowed us to test which specific BPD symptom domains explain significant variability in DAN ALFF, while accounting for 

their correlation with one another. To allay concerns about multicollinearity and the interpretability of partial betas, we report a 
dominance analysis in order to test for the incremental predictive ability of BPQ subscales (73). Results confirm that the regressor 
with the largest partial beta in our joint model induces the greatest average increase the model R2 across nested sub-models (Table 3). 
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to six of seven6 intrinsic networks. Most notably, R daIns↔DANFC was substantially stronger in the BPD group 

compared to controls (t = 4.55, p < .0001), controlling for all nodes’ NSSCDAN scores. In addition, daInsALFF 

was significantly higher in the BPD group (t = 3.76, p < .001). Second, we found a pattern of hypoconnectivity 

in R TPJ, as indicated by lower strength centrality in the BPD group (t = -2.99, p < .005). Third, we found lower 

ALFF in the BPD group across parietal nodes in the DAN (all p’s < .005). 

 We conducted a post-hoc ridge regression of all edges connected to daIns7. This analysis revealed 

hyperconnectivity between R daIns and 11 DAN regions (Table S4, all p’s < .005), suggesting a broad pattern 

of hyperconnectivity between daIns and DAN. Parietal DAN regions with lower ALFF overlapped considerably 

with nodes exhibiting heightened connectivity with daIns (Table S6, Fig S7).  

Effective Connectivity Amongst Target Regions  

Whole-brain FC/ALFF effects suggested a robust pattern of heightened daIns↔DANFC coupled with 

impaired DANALFF in the BPD group. However, these analyses cannot reveal the direction of information flow 

between daIns and DAN. Given insula’s status as a major “outflow hub” (18), we interrogated if heightened 

daIns↔DANFC could be better understood in terms daIns→DANEC, rather than DAN→daInsEC. To test this 

hypothesis, we estimated EC among R daIns, TPJ, and 15 selected DAN regions using LV-GIMME (Fig 1). 

DAN regions were selected based on the unison of regions with lower ALFF or heightened FC to daIns (details 

in Supplemental Materials).  

To capture the shared signal among parietal regions in DAN, we fit a latent variable model to their 

timeseries with LV-GIMME. Results demonstrated that daIns had a directed influence on both DAN and R TPJ 

(Fig 1). Further, LV-GIMME detected TPJ→DANEC in HCs that was not present in the BPD group. Linear 

                                                       

6 The only network that did not appear to show significantly heightened FC to daIns in the BPD group was the Limbic network. We 
note that this network showed had a remarkably weaker edge strength distribution compared to the other six networks (visually 
depicted in Figure S3). This network is comprised primarily of inferior temporal and orbitofrontal regions and thus the regional 
timeseries are likely much noisier do to susceptibility artifacts in fMRI data. 
7 After our mild consensus thresholding procedure (see Supplemental Materials), 26 edges connected to daIns were removed, leaving 
394 remaining edges to investigate in our edge analysis. 
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models indicated that daIns→DANEC and daIns→TPJEC were significantly higher in borderline participants 

(tDAN = 5.27, pDAN < .001; tTPJ = 2.04, pTPJ = .04; Table S7). 

Path Models Linking EC and ALFF 

Having established group-level increases in daIns→DANEC and daIns→TPJEC and widespread lower 

DANALFF in the BPD group, we integrated these findings with a set of multivariate path analyses. In our 

daIns→DAN path model (Table S8, Fig 2a) we found modest evidence that DANALFF was negatively associated 

with daInsALFF (p = 0.05) and daIns→DANEC (p = 0.06), but not daIns↔DANFC (p = 0.83), controlling for 

subject-level average FC and ALFF. Further, daIns→DANEC was positively associated with daInsALFF (p < 

0.001). We found limited support that daIns→DANEC mediates the relationship between daInsALFF and 

DANALFF (p = 0.07). In a parallel model (TPJ→DAN, Fig 2b), we tested the associations between TPJ and 

DAN connectivity and ALFF. We found that TPJ→DANEC was associated with higher DANALFF (p = 0.02). 

DANALFF was not associated with TPJALFF (p = 0.38) or TPJ↔DANFC (p = 0.73). Further, TPJALFF was 

associated with higher TPJ→DANEC (p < 0.001) and TPJ↔DANFC (p < 0.001). The association between 

TPJALFF and DANALFF was fully mediated by TPJ→DANEC (p = 0.02). 

In our daIns→TPJ→DAN model (Table 2, Fig 2c), we built upon the TPJ→DAN model8 by 

demonstrating that TPJ→DANEC depends on daIns→TPJEC. While daIns→TPJEC did not directly predict 

TPJ→DANEC (p = 0.74), or TPJ↔DANFC (p = 0.17), it significantly predicted weaker TPJALFF (p = 0.02). In 

turn, TPJALFF fully mediated the relationship between daIns→TPJEC and both TPJ→DANEC (p = 0.02) and 

TPJ↔DANFC (p = 0.02). 

Associations of connectivity measures with BPD Symptom Domains  

EC and path analyses demonstrated that lower DANALFF in the BPD group is a downstream effect of 

differential daIns→DANEC and TPJ→DANEC. Building on this, we sought to test which borderline symptom 

domains were most associated with DANALFF impairment. In unconditional models, nearly every BPQ subscale 

                                                       

8
 Before moving to interpreting newly introduced daIns paths we confirmed that paths that were present in both models 2 and 3 were 

nearly identical in terms of parameter values and significance values (Fig 2, Tables S8-9).    
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was negatively associated with DANALFF (Table 3). However, in a single conditional model, the negative 

association between DANALFF and the affective instability subscale remained significant, while the other 

subscales were not (all p’s > .19, Table 3).  

Discussion 

BPD symptoms often emerge during adolescence (2), a period associated with major 

neurodevelopmental changes. In a sample of adolescents and young adults with BPD symptoms, we found that 

right dorsal anterior insula (R daIns) was hyperactive (ALFF) and hyperconnected (FC and EC) to DAN relative 

to matched controls. We also found hypoactivity across parietal regions in DAN in BPD participants. Path 

analyses revealed that heightened daInsALFF (53) bolstered daIns→DANEC. Importantly, heightened 

daIns→DANEC negatively predicted DANALFF over and above daIns↔DANFC. Our findings suggest that 

blunted resting-state activity in DAN may be a useful biomarker of BPD that reflects differential inputs from 

SN regions. Comparing across BPD symptom domains, diminished DANALFF was most strongly associated with 

affective instability. Although we allowed age to moderate these effects, our primary results were consistent 

across the age range of the sample (13–30). Thus, differences in daIns connectivity and DANALFF may be a 

characteristic of BPD more generally. 

We found that lower DANALFF was differentially predicted by EC from two key SN nodes: whereas 

daIns→DANEC suppressed DANALFF, TPJ→DANEC enhanced DANALFF. Although DANALFF was bolstered by 

TPJ→DANEC, TPJALFF was itself suppressed by daIns→TPJEC in the BPD group. Thus, while daIns→DANEC 

and TPJ→DANEC play competing roles in modulating DANALFF, our analyses suggest the primacy of daIns in 

modulating activity in both DAN and TPJ. These results provide compelling evidence for aberrant integration of 

SN and DAN in BPD. A more nuanced interpretation is that abnormal intra-network communication within the 

SN (stemming from increased daIns→TPJEC) leads to an imbalance in the strength of inputs from anterior 

(insula) vs posterior (TPJ) nodes of the SN to DAN.       

aIns is a core node of SN that supports cognitive-emotional processing via attentional shifts that accord 

with task-related goals by assigning salience to behaviorally relevant cues (15,17). Its rapid integration of 
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visceral/homeostatic, emotional, social, cognitive, and sensory signals place aIns in a unique position to control 

the ongoing assignment of resources to networks responsible for the processing of exogenous cues or internal 

self-referential information (15,18,20). In previous studies daIns showed the strongest pattern of co-activation 

with higher-order cognitive networks (FPN, DAN) and was more strongly associated with switching tasks, 

whereas ventral anterior and posterior insula co-activate with affective and sensorimotor processing networks, 

respectively (21). This evidence aligns well with our finding of greater daIns↔DANFC in the BPD group, 

suggesting that hyperactivity in this region has the greatest ability to influence cognitive/executive functions. 

We also found that R TPJ, a node of the posterior SN, showed widespread, though less pronounced, 

hypoconnectivity across networks. Prior fMRI studies of BPD have found that R TPJ is hypoactivated across 

tasks measuring self/other differentiation, perspective-taking, and social feedback processing (29,74–76). These 

findings align well with R TPJ’s hypothesized role in theory of mind and mentalization (77) and more recent 

claims that TPJ is crucial in constructing social contexts (78) and representing social agents and their intentions 

(79). Hypoconnectivity of R TPJ in our data may reflect difficulties in perspective-taking and mentalizing 

associated with adolescent (80–82) and adult (83) BPD. However, TPJ is also linked to the more universal task 

of contextual updating and adjusting top-down expectations (84), providing an intriguing clue for a domain-

general functional impairment in BPD that would have direct implications for social-cognitive functioning. The 

hyper-vs hypo-connectivity dissociation within SN (daIns versus TPJ) helps to reconcile previous conflicting 

findings of SN connectivity in BPD. One ICA study found increased FC of canonical/anterior SN, including 

insula and dACC (34), where another study found hypoconnectivity in a more widespread “social salience 

network” that included canonical SN nodes and TPJ (33). While R daIns and TPJ appear to form a functional 

circuit (i.e. SN), intra-SN daIns→TPJEC impairs TPJALFF, leading to downstream impairment of inter-network 

TPJ→DANEC in BPD participants.   

DAN is involved in the control of goal-oriented/top-down selective attention (85,86) and plays a central 

role in prioritizing sensory inputs for further processing, including saccades towards high priority stimuli (87). 

Extending this notion, parietal DAN nodes construct a “priority map” of visual input by integrating top-down 
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signals relevant to goals and expectations with a compressed representation of sensory features. In turn, priority 

maps bias neural activity in primary sensory networks and govern information-seeking behaviors, particularly 

saccades (88–90). Lower DANALFF in BPD points to a diminished capacity to integrate higher-order goal 

representations to guide attention. Thus, attentional orientation towards stimuli that are associated with abstract 

goals may be overpowered by daIns-generated switch signals to brief stimuli with high associative salience. 

This account is partially consistent with the triple network model, which posits that altered salience processing 

in aIns underlies key dysfunctional interactions between FPN, SN, and DMN. However, we found stronger 

evidence of aberrant SN↔DANFC, providing an intriguing extension of the triple network model in borderline 

personality (23). Our data supports a slightly different view that aberrant SN functioning has greater direct 

implications on selective or transient attentional control implemented by DAN (91), which shows anatomical 

and functional dissociations from FPN (39,92).  

We propose that heightened daIns→DANEC in BPD may reflect a vulnerability to “hijacking” of goal-

directed, transient attention by the aIns. Heightened activity and connectivity of daIns may increase attentional 

switches among competing priorities or immediate needs in young people with BPD symptoms. This attentional 

hijacking hypothesis, if corroborated and extended in subsequent research, could provide a circuit-based 

account of attentional biases in BPD, characterized by faster saccades to and longer fixations on the eyes of 

emotional faces (93–95). While previous FC studies of SN-DAN interactions remain equivocal on the 

directionality of influence between these networks, our LV-GIMME analysis specifically tested the hypothesis 

that SN nodes primarily act on DAN. Our analysis suggests that in individuals with BPD symptoms, TPJALFF 

and DANALFF both fall prey to hijacking by daIns. A high-level conclusion from our analyses is that heightened 

switch-signaling from daIns impairs DANALFF both directly (daIns→DANEC) and indirectly vis-à-vis blunted 

TPJ→DANEC. Moreover, weaker DANALFF was particularly associated with heightened affective instability in 

our study, suggesting that disrupted intrinsic activity in DAN enhances vulnerability to negative emotion (96).  

To our knowledge this is the first whole-brain rsFC study in a sample of adolescents and young adults 

with BPD symptoms, allowing for an initial description of intrinsic connectivity during a period of heightened 
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vulnerability. Second, our study combined well-validated parcellations of the cortex, striatum, amygdala, and 

thalamus, allowing for a fine-grained analysis of whole-brain FC. Third, our network neuroscience approach 

leveraged NSSC scores, allowing for focal tests of intra- and inter-network connectivity that overcome the 

limitations of broader between-network connectivity measures such as participation coefficient (97). Fourth, we 

analyzed ALFF to uncover differential contributions of intrinsic connectivity and intrinsic activity to the 

functional network profile of BPD. Fifth, our LV-GIMME analysis reflects a state-of-the-art approach to 

measuring the directionality of connectivity when there are shared signals (here, nodes within DAN) in a 

network (98).  

While our results suggest a novel “attentional hijacking” hypothesis of BPD, in the absence of goal-

directed attentional control tasks, this hypothesis remains speculative. Future studies can directly test this 

hypothesis in task-based studies that manipulate exogenous and/or internal shifts of attention. Our primary 

findings emphasize group differences that were consistent across individuals between ages 13 and 30, and 

longitudinal assessments with clinical comparison groups are necessary to directly investigate within-person 

connectivity changes over adolescence. Likewise, replicating these findings in a sample of older adults with 

BPD symptoms would clarify whether daIns connectivity plays a major role in DAN intrinsic activity across the 

lifespan. 

 In summary, we found that intrinsic hypoactivity of DAN plays a pivotal role in the expression of 

borderline personality symptoms, particularly affective instability, in young people. We suggest that this pattern 

may represent an insula-driven attentional hijacking process whereby daIns interferes with goal-directed 

attentional control in DAN both directly and indirectly via impaired TPJ connectivity.  This account builds on 

evidence that the aIns implements attentional switches in response to dynamically changing homeostatic needs 

on short timescales (13). If hyperconnectivity of the daIns with DAN regions supports rapid attentional shifts, 

our findings may help explain the well-documented sensitivity to brief emotional cues that form a core feature 

of borderline personality (99,100). We hope that future studies extend these findings to refine a circuit-based 
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account of borderline symptoms in adolescents that can inform early intervention treatments in this high-risk, 

yet understudied, population.   
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Figures and Tables 
 

Figure 1 
Effective connectivity results 

Note. Circles denote BOLD signals fit within LV-GIMME framework. Note that SN nodes (daIns, TPJ) are fit 
to the nodal timeseries whereas DAN was fit as a network-level latent variable given the strong pattern of 
shared signal across DAN regions (see Table S6). Red solid arrows denote group-level edges that were 
significantly higher in the BPD group, where the dashed blue arrow denotes a HC-specific edge from TPJ to 
DAN. Violin/density plots are overlain on extracted model betas for each edge (e.g. model-predicted edge 
values) and bolded points denote the expected marginal mean of each edge for each group, averaged over mean 
FC value (***p < .001, *p < .05; details in Table S7).   
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Figure 2 
Graphical depiction of path models linking daIns, TPJ, and DAN signals  

  
 Note. Visual depiction of path models, fit with Bayesian parameter estimation in Mplus. Path values denote 
standardized estimates. In top left and right panels, we depict parallel dual-mediator path models that tested the 
ability of SN regions (daIns on left and TPJ on right) FC and EC to DAN to mediate the relationship between 
daInsALFF/TPJALFF and DANALFF, with both models finding support that EC from both SN regions mediate this 
relationship and outcompete FC measures in explaining variance in DANALFF. In the bottom panel, our 
combined model builds on the TPJ → DAN model, by showing that EC from daIns to TPJ suppresses TPJALFF 

leading to downstream consequences on TPJ to DAN EC. Details on all three models are reported in Table 3 
(combined) and Tables S8-9 (initial parallel mediation models). 
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Table 1 
Sample Characteristics 

Characteristic BPD (n = 40) HC (n = 42) 

Age (SD) 20.84 (4.42) 20.61 (4.16) 
PAI-BOR (SD) 47.3 (9.60) 10.3 (3.99) 
Ethnicity   
     Hispanic or Latino 3 2 
     Not Hispanic or Latino 36 40 
     Not Provided/Missing 1 0 
Race   
     Caucasian 31 30 
     African American 3 7 
     Asian American 2 1 
     Bi/Multiracial 2 4 
     Not Provided/Missing 2 0 
Average Annual Income   
     < $5,000-$19,999 10 11 
     $20,000-$34,9999 9 7 
     $35,000 - $59,999 8 5 
     $60,000 - $99,999 5 6 
     $100,000 + 3 10 
     Not Provided/Missing 5 3 
Sexuality   
     Heterosexual 28 40 
     Gay/Lesbian 1 1 
     Bisexual 8 0 
     Other 1 1 
     Not Provided/Missing 2 0 
Psychiatric Medication   
     Any Psychiatric Medication 18 0 
     SSRI 15 0 
     SNRI 2 0 
     Buproprion 3 0 
     Sedative 5 0 
     Antipsychotic 0 0 
     Anticonvulsant 2 0 
Note. Samples were sex- and age-matched. PAI-BOR: Personality 
Assessment Inventory – Borderline subscale.  
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Table 2 
Parameter Table: daIns→TPJ→DAN (Combined) Model 

Parameter Type Outcome Predictor Est.s 
Lower CI 

(2.5%) 
Upper CI 
(97.5%) 

p (two-
tailed) 

Regression DANALFF  TPJALFF 0.034 -0.047 0.116 0.414 

  TPJ→DANEC 0.890 0.128 1.667 0.020* 

  TPJ↔�DANFC 0.014 -0.067 0.094 0.730 

  daIns→TPJEC -0.007 -0.661 0.637 0.982 

  FC���� -0.308 -2.169 1.563 0.748 

  ALFF�������� 0.312 0.229 0.395 <0.001*** 

 TPJ→DANEC TPJALFF 0.041 0.016 0.067 0.002*** 

  daIns→TPJEC -0.039 -0.270 0.190 0.744 

  FC���� 1.014 0.395 1.622 0.002*** 

  ALFF�������� -0.032 -0.061 -0.004 0.026* 

 TPJ↔�DANFC TPJALFF 0.601 0.356 0.846 <0.001*** 

  daIns→TPJEC 1.547 -0.677 3.755 0.174 

  FC���� 2.600 -3.339 8.602 0.392 

  ALFF�������� -0.212 -0.492 0.006 0.132 

 TPJALFF daIns→TPJEC -2.370 -4.320 -0.374 0.022* 

  FC���� 2.350 -3.155 7.819 0.396 

  ALFF�������� 0.513 0.288 0.742 <0.001*** 

Connectivity 
Correlation  TPJ→DANEC TPJ↔�DANFC 0.044 0.026 0.070 <0.001*** 

Residual Variances 
DANALFF  0.067 0.049 0.095 <0.001*** 

TPJ→DANEC      0.009 0.006 0.012 <0.001*** 

 TPJ↔�DANFC  0.793 0.582 1.118 <0.001*** 

 TPJALFF  0.675 0.499 0.945 <0.001*** 

Intercepts DANALFF  0.494 0.042 0.954 0.032* 

 TPJ→DANEC      -0.255 -0.399 -0.111 0.002*** 

 TPJ↔�DANFC  -2.524 -3.956 -1.137 <0.001*** 

 TPJALFF  2.707 1.570 3.848 <0.001*** 

Mediation: Indirect 
Effects 

TPJALFF → TPJ→DANEC → DANALFF 0.034 0.004 0.085 0.022* 

TPJALFF → TPJ↔�DANFC → DANALFF 0.008 -0.042 0.059 0.730 

 daIns→TPJEC → TPJALFF → TPJ→DANEC -0.092 -0.218 -0.010 0.024* 

 
daIns→TPJEC → TPJALFF → 

TPJ↔�DANFC 
-1.374 -2.913 -0.211 

0.022* 
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Table 2 
Parameter Table: daIns→TPJ→DAN (Combined) Model 

Parameter Type Outcome Predictor Est.s 
Lower CI 

(2.5%) 
Upper CI 
(97.5%) 

p (two-
tailed) 

Note.  CFI = 0.991, TLI = 0.885, RMSEA = 0.144, Posterior Predictive P-Value = 0.443. Est denotes 
unstandardized Bayesian parameter estimates. Standardized estimates for significant paths are graphically 
displayed in Fig 2c.  
 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

 

Table 3 
DANALFF is negatively associated with higher affective instability 

  

Predictor tunconditional punconditional tconditional pconditional R
2���

dom  
ImpulsivityBPQ -2.64 0.010** -1.07 0.291 0.009 
Affective InstabilityBPQ -3.97 0.002** -2.87 0.005** 0.035 
AbandonmentBPQ -2.38 0.020* -0.04 0.970 0.009 
RelationshipsBPQ -2.68 0.009** -0.24 0.815 0.017 
Self-ImageBPQ -2.13 0.036* 0.29 0.771 0.020 
Suicide/Self-MutilationBPQ -2.04 0.045* 1.32 0.192 0.012 
EmptinessBPQ -2.08 0.041* -0.08 0.936 0.006 
Intense AngerBPQ -1.80 0.075† 0.68 0.500 0.004 
Quasi-Psychotic StatesBPQ -1.15 0.256 0.63 0.532 0.010 
ALFF�������� 11.75 <0.001*** 11.30 <0.001*** 0.590 

Note. Predictor column reflects BPQ subscales that were used to predict DANALFF. ALFF�������� represents a 
nuisance covariate calculated as a subject-specific mean of regional ALFF values. tunconditional and  
punconditional reflect test statistic and p-value for separately fit linear models for each BPQ subscale, where 
tconditional and pconditional reflect test statistic and p-value for parameters of a joint multiple regression, where 
subscales compete to explain variance in DANALFF (see Associations with BPD Symptom Domains in 

Methods). R2���

dom represents the average change in model R2 when entering this symptom scale into 
nested sub-models in a dominance analysis signaling the relative importance of heightened affective 
instability in predicting lower DANALFF compared to other BPD symptom domains.   
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