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Abstract

Introduction: Group iterative multiple model estimation (GIMME) has proven to be a reliable data-driven
method to arrive at functional connectivity maps that represent associations between brain regions across
time in groups and individuals. However, to date, GIMME has not been able to model time-varying task-related
effects. This article introduces HRF-GIMME, an extension of GIMME that enables the modeling of the direct and
modulatory effects of a task on functional magnetic resonance imaging data collected by using event-related de-
signs. Critically, hemodynamic response function (HRF)-GIMME incorporates person-specific modeling of the
HRF to accommodate known variability in onset delay and shape.
Methods: After an introduction of the technical aspects of HRF-GIMME, the performance of HRF-GIMME is
evaluated via both a simulation study and application to empirical data. The simulation study assesses the sen-
sitivity and specificity of HRF-GIMME by using data simulated from one slow and two rapid event-related de-
signs, and HRF-GIMME is then applied to two empirical data sets from similar designs to evaluate performance
in recovering known neural circuitry.
Results: HRF-GIMME showed high sensitivity and specificity across all simulated conditions, and it performed
well in the recovery of expected relations between convolved task vectors and brain regions in both simulated
and empirical data, particularly for the slow event-related design.
Conclusion: Results from simulated and empirical data indicate that HRF-GIMME is a powerful new tool for
obtaining directed functional connectivity maps of intrinsic and task-related connections that is able to uncover
what is common across the sample as well as crucial individual-level path connections and estimates.

Keywords: directed functional connectivity; event-related design; extended unified structural equation modeling;
functional connectivity; task modulation; time series analysis

Impact Statement

Group iterative multiple model estimation (GIMME) is a reliable method for creating functional connectivity maps of the
connections between brain regions across time, and it is able to detect what is common across the sample and what is shared
between subsets of participants, as well as individual-level path estimates. However, historically, GIMME does not model
task-related effects. The novel HRF-GIMME algorithm enables the modeling of direct and modulatory task effects through
individual-level estimation of the hemodynamic response function (HRF), presenting a powerful new tool for assessing task
effects on functional connectivity networks in functional magnetic resonance imaging data.
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Introduction

Neuroscientists have increasingly employed func-
tional connectivity analyses to arrive at graphical

maps that represent time-dependent associations among
brain regions. Group Iterative Multiple Model Estimation
(GIMME) (Gates and Molenaar, 2012) has emerged as a re-
liable data-driven method for arriving at functional connec-
tivity maps (Mumford and Ramsey, 2014). GIMME
performs well on benchmark simulated data sets (Gates
and Molenaar, 2012; Smith et al., 2011) and across numerous
types of data modalities (Gates et al., 2017; Lane et al.,
2019). Though useful for data obtained from block designs
and resting-state functional magnetic resonance imaging
(fMRI), until now it was not possible to model task-based ef-
fects within the GIMME framework.

Connectivity patterns vary meaningfully across different
experimental tasks (Cohen and D’Esposito, 2016; Gonzalez-
Castillo et al., 2017) and task conditions (Friston et al.,
1997). For instance, the functional coupling between two
brain regions might increase when presented with task stim-
uli. Hence, making inferences regarding brain processes eli-
cited by particular stimuli or task demands depends on
modeling task-based connectivity across time. To accom-
plish this goal, we extend GIMME to enable modeling of
the direct influence of tasks on brain region activity as well
as how tasks modulate, or change, the relations among
brain regions. Termed HRF-GIMME, this novel approach in-
corporates person-specific modeling of the hemodynamic re-
sponse function (HRF) into the existing framework to obtain
sparse, directed functional connectivity maps in data
obtained from event-related task designs.

The known heterogeneity across individuals that exists in
connectivity patterns (Finn et al., 2015; Laumann et al.,
2015) necessitates balancing the discovery of generalizable
findings (i.e., connections that likely exist for all individuals)
and individual differences. From a statistical standpoint, the
traditional approach in fMRI of aggregating across all individ-
uals to arrive at one composite connectivity map may identify
spurious connections and generate connectivity maps that fail
to describe any individual in the sample (Beltz et al., 2018;
Molenaar, 2004). The GIMME avoids this pitfall by allowing
for individual nuances in connectivity patterns and not aggre-
gating by averaging across individuals. Similar to multitask
approaches in machine learning, the algorithm first arrives at
a group-level pattern that represents the generalizable aspects
of the connectivity map. For each individual, the model search
then builds on this baseline group-level model to uncover the
individual-specific connectivity patterns. In addition to arriv-
ing at valid generalizable connections, this approach greatly
reduces false positives (i.e., spurious connections) and overfit-
ting to the data when arriving at individual-level connections
(Gates and Molenaar, 2012).

Hitherto, GIMME has only been evaluated and developed
for use in arriving at intrinsic connectivity patterns, or con-
nectivity patterns that represent the direct relations among
brain regions believed to be constant across time (e.g., rest-
ing state or task block designs). HRF-GIMME additionally
enables the discovery of task-based effects in the connectiv-
ity maps, which can be direct or modulating. Direct effects of
a task on region of interest (ROI) activity can be understood
as the degree to which a task influences variability in blood-

oxygen-level-dependent (BOLD) activity. This is often what
is investigated in statistical parametric maps to identify
which regions have significant change in activity during a
task or stimulus presentation. Modulating effects may also
arise when the strength or direction of relations between
two ROIs is influenced by the task stimuli. For instance, per-
haps in the absence of a task there is no functional connection
between two regions yet a connection surfaces during a task.
Or, perhaps an intrinsic functional connection exists but be-
comes attenuated in the presence of a task. This article pres-
ents innovations that enable these direct and modulating task
effects to be identified.

The multiplication of the HRF-convolved task vector with
the brain region activity across time allows for investigation
into how the connections between brain regions vary in the
presence of the task, much like is done in psychophysiolog-
ical interaction (PPI) analysis (Friston et al., 1997). The dif-
ference in HRF-GIMME is that intrinsic connections are also
included, meaning that the relations among brain regions
emerge that may exist regardless of the presence or absence
of a task. A benefit of examining these relations in the con-
text of functional connectivity is that one can identify indi-
rect effects, or the possibility that the relation between task
and BOLD activity for a specific region is mediated by an-
other region. By modeling intrinsic, direct task, and modula-
tory effects simultaneously the inferences made can be
similar to those in dynamic causal modeling (DCM) (Friston
et al., 2003; Gates et al., 2011). These modulatory or bilinear
effects in combination with the intrinsic connections among
brain regions enable the use of the HRF-GIMME algorithm
with task-based data, in which connectivity patterns and
strengths likely change across time.

Modeling the task-related connections among brain re-
gions typically requires the use of an HRF to arrive at the
expected BOLD response generated by task stimuli. The
HRF describes the expected time course of the changes in
deoxyhemoglobin that occur after neural activity. Previous
research has shown that the parameters governing the
shape of the HRF vary between people more so than within
people (Handwerker et al., 2004). As such, to account for
HRF variability, best practice involves deriving person-
specific HRF parameters (Friston et al., 1997). The HRF-
GIMME uses the smoothed finite impulse response
(sFIR) (Goutte et al., 2000) to estimate HRF parameters
separately for each individual. The FIR makes no assump-
tions about the shape of the HRF (Lindquist and Wager,
2007) and has been found to correctly recover the true
HRF shape even when it varies across individuals (Lind-
quist et al., 2009). By using the sFIR to model individual-
level HRF, HRF-GIMME can flexibly control for potential
direct effects of the task on each brain region’s activity
while also investigating connectivity among the brain re-
gions themselves (Price et al., 2020).

The article is structured as follows. First, we introduce the
technical details regarding the GIMME algorithm. Next, we
describe the generation of person-specific HRF-convolved
task vectors and their use in HRF-GIMME. We then evaluate
the performance of HRF-GIMME for data generated to be
from slow and fast event-related task designs. Given that
modulatory effects have the potential to be low powered
(McClelland and Judd, 1993), we also investigate the bene-
fits and pitfalls of having a more lenient threshold for
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including connections in models. We then present results
from empirical data examples. Finally, we conclude with
summaries of the findings and suggestions for users.

Technical Description of HRF-GIMME

Original GIMME

The original GIMME algorithm (Gates and Molenaar, 2012)
provides the basis of the current extension. GIMME obtains re-
liable group- and individual-level patterns of dynamic effects,
with all effects being estimated uniquely for each individual.
The primary heuristic behind GIMME is to search for relations
that are consistent across individuals and to use those relations
as a foundation for searching for relations that may be unique
to individuals. GIMME is based on a unified structural equation
modeling (uSEM) framework (Gates et al., 2010; Kim et al.,
2007). It detects both contemporaneous (i.e., instantaneous) as
well as lagged relations, both of which occur in fMRI data due
to the rate of measurement relative to the underlying neuronal ac-
tivity of interest (Logothetis, 2008). Simulation studies suggest
that contemporaneous relations best reflect the brain processes
when using fMRI data (Ramsey et al., 2011; Smith et al., 2011).

The uSEM implemented in GIMME is:

yi, t = Ai
iþAg

i

� �
yi, t þ Fi

iþFg
i

� �
yi, t� 1þ 1t, (1)

where yi, t is a vector of the p-variate ROI time series for an
individual i at time t, each A matrix is a p · p matrix of con-
temporaneous effect estimates among the p ROIs (with a
zero diagonal), each F is a p · p matrix of lagged effect esti-
mates with autoregressive effects on the diagonal, and 1t is the
p-variate vector of the errors that are assumed to be uncorre-
lated white noise processes. The superscript g for the param-
eter matrices indicates that the matrix has the same structure
across the group (here, the entire sample). The superscript i in-
dicates patterns of connections that are unique for the individ-
ual. The subscript i indicates individual-level estimates for
those connections identified to be estimated. Note that every
parameter included in the individual- and group-level patterns
is estimated uniquely for each individual, even when the pat-
tern is the same, as seen in the g-superscript matrices.

The search for connectivity patterns begins by estimating a
null model defined here as having no connections among the
brain regions; they are considered independent. Typically,
autoregressive effects, or how a brain region’s activity pre-
dicts itself at the next time point, are estimated to start. There-
after, a score function, or modification index (Sörbom, 1989),
is calculated for each potential connection among brain re-
gions for each individual. The GIMME algorithm first selects
the connection that is significant for the most individuals, as
indicated by the modification indices after a strict Bonferroni
correction. If this connection is significant for at least the ma-
jority of individuals, then it is added. The threshold for what
constitutes the majority can be user-defined, and we explore
the impact of that choice in this article. The current default
is 75% of the individuals in the sample, which reflects the
expected missed-signal due to noise (Smith et al., 2011).
The sequence continues in a forward-selection fashion until
no modification indices meet this criterion. GIMME continues
by estimating for each individual the connectivity pattern of
effects obtained at the group-level search, which can include
both contemporaneous and lagged relations. From this starting

point it then searches for connections that are unique to indi-
viduals, again using modification indices to guide the addition
of connections. Full details can be found in Gates and Mole-
naar (2012) and Lane and Gates (2017).

HRF-GIMME

HRF-GIMME extends GIMME to model the direct effects
of tasks as well as how tasks modulate (or change the weight
of) connections among brain regions. Task effects have pre-
viously been integrated into the individual-level uSEM in the
form of the extended unified SEM (euSEM) (Gates et al.,
2011), which for one task onset vector is:

yi, t = Ai
iþAg

i

� �
yi, t þ Fi

iþFg
i

� �
yi, t� 1þ ci

iþ c
g
i

� �
ui, t

þ si
iþ s

g
i

� �
ui, tyi, t þ 1t,

(2)

where subscript and superscript conventions are as explained
earlier. The new c parameter matrices provide the estimated
coefficients for the direct relation between the convolved
task vector (u, described below) and the timeseries for
each brain region. The s parameter matrices provide the es-
timated bilinear coefficients, or the modulatory effects for
how the relation between two brain regions varies based on
values of the convolved task vector. This can be extended
to include additional task vectors if the experiment involves
multiple trial types or phases. When task-onset vectors and
specific multiplied variables are included, the direct and
modulatory task effects are selected by using the same
GIMME algorithm described earlier.

Obtaining person-specific convolved task vectors

The first step in arriving at the person-specific convolved
task vectors is to estimate the expected shape of the BOLD
response given the task-onset vector. Of all ROIs included
in the data passed into HRF-GIMME, HRF-GIMME estima-
tes the HRF for each ROIs using sFIR, and it selects the es-
timated HRF that explains the greatest proportion of
variance. Although it may be ideal to generate an HRF for
each ROI within an individual, this is not feasible within
the present estimation framework. Given this limitation
and prior work (Handwerker et al., 2004), it is imperative
that HRF-GIMME estimates HRFs separately for individu-
als, but not within each individual.

The FIR contains one free parameter for each time point in
a window of time after the onset of a stimulus (Glover,
1999). Each time point after the onset of the stimulus is mod-
eled as a separate weighted basis function. In this way, the
response function is estimated for the provided stimulus
onset throughout the provided length of the response window
(e.g., 16 sec). The smooth FIR is simply an FIR model with a
Gaussian prior placed on adjacent beta estimates to constrain
the fit to be smoother (Goutte et al., 2000).

Should missing values exist for some time points, such as
those that have been scrubbed due to motion, HRF-GIMME
utilizes the Kalman filter to impute values before the FIR
analysis by using the R package imputeTS (Moritz and
Bartz-Beielstein, 2017). This imputation is only used to gen-
erate the convolved task vector.* Once sFIR is used to obtain

*For a treatment of missing data during the model search phase,
see Lane and Gates (2017).

420 DUFFY ET AL.



unique parameter estimates of the HRF for each individual,
the onset task vector is convolved with this basis set. This re-
sults in a unique HRF-convolved task vector for each indi-
vidual that matches the expected change in the BOLD
signal after a task stimulus presentation (Fig. 1).

Simulation Study

Simulation conditions

We conducted a simulation study to assess whether HRF-
GIMME could recover a known data-generating connectivity
pattern under conditions likely to be encountered by fMRI
researchers. The simulation study sought to evaluate two
sets of conditions: (1) which group cutoff to use for defining
‘‘the majority’’ when arriving at the pattern of connections
common across individuals, and (2) how well the algorithm
performs on data obtained from slow versus rapid onset de-
signs. We opted not to investigate the impact of altering the
HRF parameters (e.g., slow time to peak), as the sFIR has al-
ready extensively been evaluated for this purpose (Lindquist
et al., 2009). Provided that the HRF shape is estimated appro-
priately for each individual, which can be expected (Linquist
et al., 2009), there is no reason to believe variations in the
HRF such as delay to onset will impact results here. One
might argue that magnitude differences may be important.
By standardizing each resulting HRF vector as well as all
ROI time series and multiplied variables, we allay this concern.

The default for what constitutes the majority in GIMME
has been informed by a large-scale simulation study con-
ducted by Smith and colleagues (2011) on data generated
to emulate resting-state fMRI data. However, Smith and col-

leagues (2011) did not consider modulatory effects, which
can be difficult to detect due to low power (McClelland
and Judd, 1993). For this reason, we evaluated two criteria
for the majority, 75% and 51%, to determine their perfor-
mance in recovering simulated connectivity patterns.

The second simulation factor aimed at testing the ability of
HRF-GIMME to detect changes in connectivity that may
occur quickly. Given that most investigations into HRF per-
formance (Lindquist et al., 2009) have evaluated the HRF es-
timation in slow event-related designs, we expected that
HRF-GIMME would perform well when the inter-trial interval
(ITI) was approximately as long as the expected length of the
HRF (e.g., around 16 sec to recovery). This allows for the elic-
itation of task-related BOLD activity and changes in the con-
nectivity patterns. For this simulation parameter, we generated
data with an ITI of 30 sec. To model a more rapid event-related
design, two conditions were used, one with a mean ITI of
2.42 sec, to emulate the design of the rapid event-related em-
pirical data used, and the other with a mean ITI of 3.92 sec,
to emulate designs suggested in the literature. Exact specifica-
tion of the event designs is described in the subsequent section.
It is suspected that HRF-GIMME may not perform as well in
the rapid event-related conditions as the slow event-related
condition, since the expected task-evoked response may not
have enough variability to capture changes in connectivity be-
tween relations, as illustrated in Figure 2. We expect that task-
modulated relations (i.e., connections that are strong enough
to reach significance only during task) will surface as intrinsic
connections in this case. In addition, having such short inter-
vals between tasks may lead to violations of the HRF linearity
assumption (Miezin et al., 2000).

FIG. 1. Schematic representation of convolution of task onset vector with HRF. (a) Demonstrates the process of estimating
the person-specific HRF after the onset of a stimulus (represented as the red line) using the sFIR, done internally in HRF-
GIMME. (b) Represents the stimuli in an event-related design, with each red line representing a stimulus. (c) Demonstrates
the final convolved event-onset vector, where the person-specific HRF model estimated in (a) is overlaid with the events in
(b). GIMME, group iterative multiple model estimation; HRF, hemodynamic response function; sFIR, smoothed finite im-
pulse response. Color images are available online.
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Data generation procedure

Generating task vectors. For the rapid event onset condi-
tion of the simulations, binary event onset vectors were cre-
ated by using OptSeq (Greve, 2002), a tool developed to
automatically generate onsets for rapid event-related designs
with optimal ‘‘jittering’’ of null events to lessen the overlap
of the HRF estimates inherent in rapid stimulus presentation
and optimize the power of the design. Two rapid conditions
with an ITI of 2 sec were used: The first had 20% of trials as
null events, with a mean ITI of 2.40 sec (min 2 sec, max
6 sec), to better mimic the rapid condition of the empirical
data we used (Mennes et al., 2013), and the second had
50% of trials as null events, with a mean ITI of 3.92 sec
(min 2 sec, max 18 sec), to better mimic what is recommen-
ded more often in the literature (Liu, 2004). For the slow
event-onset condition of the simulations, binary event
onset vectors were generated in line with a previous simula-
tion study on modeling the HRF (Lindquist et al., 2009).
Events were 1 sec in length, with an ITI of 30 sec. Since
the response curve of the HRF is *16 sec long, ‘‘jittering’’
with null events was not necessary.

Generating BOLD time series. All onset vectors were
then convolved with a canonical HRF (difference of two
gamma functions) by using the SimTB toolbox (Erhardt
et al., 2012) to arrive at vectors of anticipated BOLD response
following task stimuli (ui). These convolved onset vectors
were then used in data simulation. The data-generating equa-
tion is found via algebraic manipulation of Equation (2):

yi, t, k = I�Ai� si, t ui, tð Þ� 1 Fið Þyi, t� 1

þ I�Ai� sið Þui, tð Þ� 1
cið Þui, t

þ I�Ai� si ui, tð Þ� 1
1i, t:

(3)

Here, the individual and group pattern connectivity matri-
ces are combined into one (e.g., Ai = Ai

iþAg
i ) for succinct pre-

sentation. Data were simulated for 150 participants. For all
conditions, the total number of time points T = 500. Time se-
ries were started with a burn-in of 1000 time points. The 1i

noise vectors were generated to have a variance of 2 to ensure
an average signal-to-noise ratio (SNR) of 2.65. The SNR here
was defined as the ratio of the standard deviation of the con-
volved onsets to the standard deviation of the noise in the
data following the use of SNR in DCM studies (Welvaert

and Rosseel, 2013). The pattern of connectivity in the data
was simulated as represented in Figure 3, and it includes
both modulatory (on the relationship between ROIs 3 and 4)
and direct task effects. All code for simulations, as well as out-
put, is available at: https://osf.io/d6wbx/.

Simulation results

Simulation results (Table 1) showed that for the slow
event-related design, there was a 100% recovery rate for
all paths, regardless of the group cutoff value (0.75 vs.

FIG. 2. Exemplar data of rapid (left) and slow (right) event-related onset vectors convolved with an HRF for 50 time points.
Black lines indicate onset of task events.

FIG. 3. Schematic representation of connectivity for gen-
eration of simulated data. ‘‘ROI’’ = brain region of interest;
‘‘Task’’ = person-specific HRF-convolved task vector; ‘‘by
task’’ = ROI is multiplied by convolved task vector. All
paths between other variables represent intrinsic connectiv-
ity. Solid lines indicate a contemporaneous connection, and
dashed lines indicate a lagged connection of the first order.
Intrinsic connections are seen among ROIs 1–3; the direct
task effect exists for ROI2 and ROI4; the task modulates
the relation between ROI3 and ROI4 such that no relation ex-
ists in the absence of the task but is present during the task.
All variables have (first-order) autoregressive effects, indi-
cated by looped dashed line, except the convolved task vec-
tor and the modulatory effect. The numbers above the lines
indicate the connection weight used in simulating the data.
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0.51). Both rapid event-related designs, however, had an
*80% recovery rate of all paths, for group cutoff values
of 0.75 and 0.51. This was due to a very low (near 0%) recov-
ery of the Task-ROI4 path, which was consistently recovered
in the slow event onset condition. The Task-ROI4 path has a
lower connection weight (0.2) than the other direct effect
(0.6), as well as the bilinear connection (0.6), so it may be
more difficult for HRF-GIMME to capture these weaker ef-
fects in the rapid event-related designs where there is less
variability within an individual’s HRF.

False positive rates were relatively low across all condi-
tions. The slow event onset condition had a specificity of
*92%, and there was a negligible (0.2%) increase in false
positive rates between the 0.75 and 0.51 group cutoff values.
This was similar to the rapid onset condition with 50% of
null events, which had a 92.23% specificity at both a group
cutoff value of 0.51 and a cutoff value of 0.75. The rapid
event onset condition with only 20% null events had a
lower rate of false positives, with 99.97% specificity in the
0.75 group cutoff condition and a 99.99% specificity in the
0.51 group cutoff condition.

Empirical Data Examples

To investigate the use of HRF-GIMME with empirical
data, we obtained publicly available data from the Open-

fMRI project (PI: Poldrack; NSF Grant: OCI-1131441).
The first dataset tested (Accession No. ds101) was a rapid
event-related Simon task, similar to the rapid event onset
simulation condition with 20% null events, with a sample
size of N = 21. The second dataset tested (Accession No.
ds102) (Kelly et al., 2008) was a slow event-related Flanker
task, similar to the slow event onset simulation condition,
with N = 25. Both studies were approved by the institutional
review boards of the data collection sites. Details regarding
the designs and processing of data can be found in the Sup-
plementary Data, along with additional analyses sub-
sampling the data to ensure consistency of results due to
smaller sample sizes consistency of results due to smaller
sample sizes (Supplementary Figs. S1–S4).

Eight regions were selected separately for each task by
using centers of activation (Tables 2 and 3) from a meta-
analysis of multiple tasks, including the Flanker and Simon
(Nee et al., 2007) as well as a meta-analysis of the frontal
eye fields (Paus, 1996). A 6 mm sphere was used to construct
the ROIs, and ROI time series were extracted. The ROI time
series and binarized event onset vectors for the two runs were
concatenated for each subject, and each dataset was sepa-
rately analyzed by using HRF-GIMME. Modulating effects
were then explored by multiplying the task vector with
three ROIs determined to be likely related to the task from
previous literature (Kerns, 2006; Mennes et al., 2010; Nee
et al., 2007). In the Flanker task, this was the left precuneus
(lPrec), medial frontal/anterior cingulate cortex (ACC), and

Table 1. Recovery Rate of All True Paths As Well As Overall Sensitivity

and Specificity Across Each Condition of the Simulation

Condition
ROI1/

ROI2
ROI2/

ROI3
Task/
ROI2

ROI3_by_
Task/ROI4

Task/
ROI4 Sensitivity, % Specificity, %

0.75 cutoff, slow design 1.00 1.00 1.00 1.00 1.00 100.00 91.46
0.51 cutoff, slow design 1.00 1.00 1.00 1.00 1.00 100.00 91.23
0.75 cutoff, rapid design 20% null 1.00 1.00 1.00 1.00 0.0007 80.01 99.97
0.51 cutoff, rapid design 20% null 1.00 1.00 1.00 1.00 0.0004 80.00 99.99
0.75 cutoff, rapid design 50% null 1.00 1.00 1.00 1.00 0.00 80.00 92.31
0.51 cutoff, rapid design 50% null 1.00 1.00 1.00 1.00 0.00 80.00 92.31

ROI, region of interest.

Table 2. Coordinates in Montreal Neurological

Institute Space for Centers of Constructed Region

of Interests for Flanker Task, Along with Their

Corresponding Brodmann’s Area, Anatomical Region,

and Abbreviation Denoted in Output Figures

x y z BA Region

40 14 28 9 rdlPFC
36 16 20 13 rIns
0 20 48 6/8/32 Medial frontal/ACC
�36 16 4 13 lifIns
�18 �72 42 7 lPrec
2 16 46 8 mfACC
�32 �5 50 6 lFEF
31 �5 50 6 rFEF

ACC, anterior cingulate cortex; BA, Brodmann’s area; lFEF, left
frontal eye fields; lifIns, left inferior frontal/insula; lPrec, left precu-
neus; mfACC, medial frontal/anterior cingulate cortex; rdlPFC, right
dorsolateral prefrontal cortex; rFEF, right frontal eye fields; rIns,
right insula.

Table 3. Coordinates in Montreal Neurological

Institute Space for Centers of Constructed

Region of Interests for Simon Task, Along with Their

Corresponding Brodmann’s Area, Anatomical Region,

and Abbreviation Denoted in Output Figures

x y z BA Region

40 14 28 9 rdlPFC
�22 �64 46 7 lPrec
0 20 48 6/8/32 Medial frontal/ACC
50 �44 32 9 rIP
�42 16 28 9/6/46/8/13 ldlPFC
0 �26 6 50 Thal
�32 �5 50 6 lFEF
31 �5 50 6 rFEF

ldlPFC, left dorsolateral prefrontal cortex; rIP, right inferior pari-
etal lobule; Thal, thalamus.
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the right dorsolateral prefrontal cortex (rdlPFC). In the
Simon task, this was the thalamus, ACC, and right inferior
parietal. All variables were mean centered before multiply-
ing, and the data were standardized. Both datasets were ana-
lyzed with a group cutoff value of both 0.51 and 0.75.

Figure 4 depicts the results from the Flanker design
data. At a group cutoff value of 0.51 (Fig. 4, right panel),
a group-level direct effect of the task on the lPrec was
detected, as well as group-level connections between the
left frontal eye fields (lFEF) and lPrec, lFEF and the
ACC, the rdlPFC-right FEF, as well as the rdlPFC-right
insula (rIns) and the medial-frontal ACC-ACC connections
(the only two group-level paths detected at the 0.75 group
cutoff [Fig. 4, left panel]). At the individual level, direct
effects of the task on all ROIs and modulatory effects of
the selected ROIs and the task were detected, and the
total number of modulatory paths did not differ between
the cutoff values.

The results aligned with known circuitry. The FEF, insula,
ACC, and dlPFC show strong activation during the Flanker
task (Mennes et al., 2010; Nee et al., 2007), and the precu-
neus, dlPFC, and ACC are expected to activate together, as
all have been shown to have the highest responses to certain
Flanker task conditions (van Veen et al., 2001). Further, the
consistent group-level rdlPFC-rIns connection may represent
the linkage between the two distinct task-positive cognitive
control networks proposed by Dosenbach and colleagues
(2007), the frontoparietal network (which includes the
FEF, dlPFC, and precuneus) and cinguloopercular network
(which includes the insula and ACC). Thus, the presence

of group-level connection between these regions and related
to the task suggests valid detection by HRF-GIMME, partic-
ularly at the 0.51 group cutoff.

For the rapid event-related Simon task, results were identi-
cal for both the 0.75 and 0.51 group cutoff values (Fig. 5).
Only one group-level path was detected, the lFEF-ACC. Far
fewer task-related effects were detected than in the slow
event-related design, where all tested ROI-task modulations
had significant connections at the individual level. Hence sim-
ilar to the simulation results, HRF-GIMME detected modula-
tory effects in the slow event-related design more so than the
rapid event-related design, perhaps reflecting minimized var-
iability in the HRF for rapid designs. Again, results from the
rapid event-related Simon task align with known circuitry,
particularly at the individual level. The dlPFC, ACC, and pa-
rietal cortex have all been shown to activate strongly during
the Simon task (Nee et al., 2007), and once again, the precu-
neus, dlPFC, and ACC are expected to activate together (van
Veen et al., 2001), and all selected ROIs are generally part of
cognitive control networks (Dosenbach et al., 2007). Thus, di-
rect effects of the task on nearly all ROIs indicate valid detec-
tion of connections by HRF-GIMME.

Although group-level paths may be less likely to appear in
rapid event-related designs, it is important to underscore that
a benefit of GIMME is its ability to create individual-level
networks. As previously mentioned, HRF-GIMME is able
to uniquely estimate each individual’s HRF, as well as obtain
individual-level path estimates. This allows the user to un-
derstand the heterogeneity that exists between individuals
in terms of functional connectivity. Figure 6 highlights this

FIG. 4. HRF-GIMME summary paths plot for the slow event-related Flanker task, at group cutoff values of 0.75 (left) and
0.51 (right). Note that variables indicating ‘‘X_by_X’’ represent modulating effects, and the variable ‘‘task’’ indicates the
direct effect of the task on the other variables. All paths between other variables represent intrinsic connectivity. Solid
lines indicate a contemporaneous connection, and dashed lines indicate a lagged connection of the first order. Black lines
indicate a group-level connection, and gray lines indicate an individual-level connection. The width of any given line cor-
responds to the count of individuals for whom the path was generated.
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by comparing the estimated HRF and resultant connectivity
plots of two individuals from the Simon task. The estimated
HRFs of the two individuals differ, with subject 8’s (Fig. 6a)
being quite canonical, and subject 13’s (Fig. 6b) being com-
paratively delayed. The connectivity plots also differ, as both
subjects have different direct effects of the task, and subject 8
has both positive and negative direct task effects, highlight-
ing two potentially distinct circuitries.

Discussion

HRF-GIMME enables the modeling of task effects di-
rectly within a robust functional connectivity framework.
A number of benefits occur through this novel integration,
allowing for the HRF-convolved task vector to be included
in the connectivity maps derived from the original GIMME
algorithm. For one, both intrinsic and task-modulated con-
nectivity patterns are obtained. In this way, researchers can
identify which connections are impacted by task conditions
and demands. Two, any influence the task has directly on
specific brain regions will be accounted for. In this way,
HRF-GIMME controls for the potential direct task effects
when estimating and identifying the connectivity among re-
gions. This also enables investigation into mediation effects,
thus clarifying results seen in univariate spatial parametric
tests by allowing for the possibility that other brain regions
mediate the relationship between task onset and BOLD re-
sponse. Three, the power to detect connectivity can be in-
creased by altering the threshold of what is considered the
‘‘majority’’ in the search procedure, thus enabling greater de-
tection even if the signal is weak across some individuals.

GIMME attends to individual differences in two ways:
allowing for person-specific connections and estimating
each connection weight separately for each individual. The
algorithm allows for qualitative (i.e., presence or absence
of connections) and quantitative (i.e., numeric) differences
to surface in the values for connections. As demonstrated
elsewhere, GIMME also has the capacity to subgroup indi-
viduals based on all paths (Gates et al., 2017), including
intrinsic, extrinsic, and modulatory. Taken together, HRF-
GIMME attends to known heterogeneity in brain processes
while also assessing what is common in brain processes
across the sample. Using both simulated and empirical
data, the HRF-GIMME performed well in terms of its ability
to recover expected relations between convolved task vectors
and brain regions.

When applied to three sets of simulated data in which
one condition emulated a slow event-related design and
two utilized rapid event-related designs, the sensitivity,
or ability to recover true connections, was greater in the
slow onset condition (100%) compared with the rapid
onset conditions (80%). In the rapid event-related condi-
tions, the consistent finding was that the weaker of the
two simulated direct effects of the task on BOLD values
was not detected. That the modulatory effects were
detected was expected, given that the modeling approach
within used in HRF-GIMME has been found in prior stud-
ies to have more power to detect person-specific true
effects in simulated data than DCM (Gates et al., 2011).
Empirical fMRI data yielded similar results, with
the slow event-related design detecting many more task-
related effects overall than the rapid design (although

FIG. 5. HRF-GIMME summary paths plot for the rapid event-related Simon task, at a group cutoff value of 0.75 (left) and
0.51 (right). Note that variables indicating ‘‘X_by_X’’ represent modulating effects, and the variable ‘‘task’’ indicates the
direct effect of the task on the other variables. All paths between other variables represent intrinsic connectivity. Solid
lines indicate a contemporaneous connection, and dashed lines indicate a lagged connection of the first order. Black lines
indicate a group-level connection, and gray lines indicate an individual-level connection. The width of any given line cor-
responds to the count of individuals for whom the path was generated.
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it is possible that fewer connections consistently exist
across individuals in rapid event-related designs). In the
simulated data, varying the cutoff of the proportion of
individuals that determines a group-level path from
0.75 to 0.51 did not affect the sensitivity of any of the re-
sults, although this might be due to ceiling effects. In the
empirical data, varying the group cutoff value did not im-
pact the results of the rapid event-related design, but it did

yield a group-level direct effect of the task when decreas-
ing the cutoff from 0.75 to 0.51 in the slow event-related
design. Importantly, both sets of results conformed to
expectations of connectivity patterns given prior litera-
ture, indicating that the results may be providing accurate
inferences.

The specificity in the simulated data was high across
both the slow event-related onset (*91%) and rapid

FIG. 6. From the rapid event-related Simon task data analyzed. (a) The estimated HRF (left) using the sFIR function of
HRF-GIMME and the individual path connectivity plot (right) for subject 8. (b) The estimated HRF (left) using the sFIR
function of HRF-GIMME and the individual path connectivity plot (right) for subject 13. For the connectivity plots, a red
line indicates a positive connection, a blue line indicates a negative connection, a solid line indicates a contemporaneous con-
nection, and a dashed line indicates a lagged connection of the first order. The weight of the line corresponds to the magnitude
of the connection, such that a thicker line indicates a stronger magnitude of connectivity. Color images are available online.
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event-related onset (*99.9% for 20% null, and 92%
for 50% null) designs, meaning that very few false posi-
tives were recovered. Notably, varying the cutoff of
the proportion of individuals that determines a group-
level path did very little to affect the specificity of the
results. Decreasing the group cutoff from 0.75 to 0.51
only decreased the specificity by 0.2% in the slow event-
related condition, and it did not decrease the specificity
in either rapid event-related condition. This suggests
that relaxing the criterion for what constitutes a group-
level path did not introduce false positives into the search
procedure.

Considering these results together, due to the greater de-
tection of task-related relations at a group cutoff of 0.51 in
the empirical data, as well as the lack of increased false
positives in this condition for the simulated data, we rec-
ommend that the user set the cutoff value for group-level
paths to 0.51 for HRF-GIMME given the lower power to
detect effects from modulating variables. Results from
the slow event-related empirical data indicate that the
high levels of heterogeneity between individuals may
make detecting task-related effects, and particularly the
nuanced modulating effects, difficult. Reducing the group
cutoff value should improve the chances of group-level de-
tection of task effects, with minimal risk for increasing
false positives.

Researchers selecting the optimal analytic approach
should consider design features and research questions
when selecting a method. First and foremost, HRF-
GIMME necessitates event-related designs. For designs
where there is no time-varying task vector (e.g., resting
state designs), original GIMME, vector autoregression, or
partial correlation approaches would be more suitable as
they do not require a time-varying task vector. Another de-
sign feature concerns the number of individuals and num-
ber of brain regions of interest. There is no upper limit to
the number of individuals. The lowest number that has
been tested has been 10 participants, in which case
GIMME performed well (Gates and Molenaar, 2012).
There is a limit to the number of brain regions to consider,
with a maximum of 25 suggested when counting both the
brain regions and task-by-brain region interactions tested.
In terms of research questions, HRF-GIMME is ideal for
applications where the researchers are interested in detect-
ing the direct and mediating relations among brain regions
as well as the modulatory and direct task effects. This is
similar to DCM and contrasts PPI, for instance, where
only the modulatory task effects are modeled. However,
prior work suggests that the modeling approach underlying
HRF-GIMME (euSEM) (Gates et al., 2011) has more
power to detect modulatory effects than DCM, suggesting
a benefit over this approach. Finally, HRF-GIMME is also
well suited for data where some heterogeneity in the func-
tional connectivity maps is expected across the individuals.
Given that connectivity tends to vary across individuals
(Laumman et al., 2015), the assumption of heterogene-
ity across individuals is likely required when conducting
analyses.

Several limitations should be considered. As previously
mentioned, although each individual has a uniquely esti-
mated HRF, one drawback of HRF-GIMME is that each
brain region within an individual is modeled using the

same HRF, yet the HRF can vary between brain re-
gions (Miezin et al., 2000). Although it is known that the
variation between brain regions is less than the variation
between individuals (Handwerker et al., 2004), enabling
ROI-specific HRF estimates could easily be done within
this analytic framework provided computationally effi-
cient approaches are used. This represents an area for fu-
ture work.

In addition, due to the low detection of task-related paths
in both the simulated and empirical data, irrespective of
group cutoff value, we caution that some weaker task-
related effects may be missed when using HRF-GIMME
to model rapid event-related designs. As shown in Figure 2,
due to the nature of the HRF, rapid event-related designs
often result in less variability in the expected HRF, which
makes detection of the direct and modulating effects of
the task difficult. The user may want to consider designing
a slow event-related task for evaluating task-modulated
connections. Future extensions of HRF-GIMME will aim
at improving the power to detect task-related effects, partic-
ularly by including adaptations for rapid event-related
designs.

Conclusion

HRF-GIMME is a novel and powerful new method for
obtaining directed functional connectivity maps of event-
related designs. Individual differences in connectivity pat-
terns are obtained along with connections that are found to
be consistent across individuals, allowing for generaliz-
able inferences. Direct, mediating, and modulating influ-
ences of event-related tasks on brain connectivity can be
captured by using HRF-GIMME. Importantly, person-
specific estimation of the HRF is utilized within the mod-
eling approach. HRF-GIMME is freely and publicly avail-
able as an option in the gimme R package (Lane et al.,
2019). Exemplar simulated data and code are provided
with the package as well as the OSF page associated
with this article.
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