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Abstract

Converging evidence from both human neuroimaging and animal studies has supported a model of 

mesolimbic processing underlying reward learning behaviors, based on the computation of reward 

prediction errors. However, competing evidence supports human dopamine signaling in the basal 

ganglia as also contributing to the generation of higher order learning heuristics. Here, we present 

data from a large (N = 81, 18–30yo), multi-modal neuroimaging study using simultaneously 

acquired task fMRI, affording temporal resolution of reward system function, and PET imaging 

with [11C]Raclopride (RAC), assessing striatal dopamine (DA) D2/3 receptor binding, during 
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performance of a probabilistic reward learning task. Both fMRI activation and PET DA measures 

showed ventral striatum involvement for signaling rewards. However, greater DA release was 

uniquely associated with learning strategies (i.e., learning rates) that were more task-optimal 

within the best fitting reinforcement learning model. This DA response was associated with BOLD 

activation of a network of regions including anterior cingulate cortex, medial prefrontal cortex, 

thalamus and posterior parietal cortex, primarily during expectation, rather than prediction error, 

task epochs. Together, these data provide novel, human in vivo evidence that striatal dopaminergic 

signaling interacts with a network of cortical regions to generate task-optimal learning strategies, 

rather than representing reward outcomes in isolation.
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1. Introduction

The functional roles of striatal dopamine (DA) signaling have been extensively studied, 

due in part to their wide-ranging contributions to learning, motivational, and motor 

processes. Converging evidence from human neuroimaging studies, including Positron 

Emission Tomography (PET) and functional magnetic resonance imaging (fMRI), as well as 

electrophysiology, voltammetry, and optogenetic studies, provide compelling evidence that 

ventral striatal dopamine signals the value of reward outcomes relative to their expectation 

(Schultz et al., 1993). Critically, this signaling has been found to support updating of 

internally tracked value states (i.e., learning) in addition to reward reactivity (Glimcher, 

2011) but the relative contribution to learning processes in humans is still not fully 

understood.

Work in animal models has characterized important contributions of DAergic processes in 

supporting unique aspects of reward processing and learning. Phasic activity of DA neurons 

in the ventral tegmental area (VTA) signals the difference between reward receipt and the 

expected value of that reward (Glimcher, 2011; Schultz, 1986), termed reward prediction 

error (RPE) (Rescorla and Wagner, 1972). More generally, such responses are generated 

upon the updating of expectation of total future rewards as part of the temporal difference 

(TD) model (Niv et al., 2005; Sutton, 1999). By this model, any information that causes 

a revision of future expected rewards generates an error signal, providing the basis for 

reward learning behaviors. Recent work has begun to dissociate the contributions of VTA 

and nucleus accumbens (NAcc) to RPE, with VTA identifying the presence of a reward, and 

NAcc DA release reflecting reward expectation (Mohebi et al., 2019).

Critically, encoding RPEs in this manner enables DAergic processes to play a key role in 

the learning of reward contingencies. Striatal DA neurons modulate long term potentiation 

(LTP) and depression (LTD) of synaptic strength (Pawlak and Kerr, 2008; Shen et al., 2008, 

for review see Gerfen and Surmeier, 2011), and DAergic activation has been shown to 

regulate dendritic spine growth (Yagishita et al., 2014), providing mechanisms by which 

RPEs can affect synaptic plasticity, potentially enabling the updating of future reward 
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expectations. Neuroimaging studies in humans have provided supporting evidence for a 

similar role of ventral striatal DA as a key signaling mechanism in reward processing. 

Prediction error responses have been demonstrated in NAcc activation in fMRI studies 

(Berns et al., 2001; Niv et al., 2015; Rodriguez et al., 2006), and a growing body of PET 

studies have supported the view that these can be linked directly to DAergic processes 

(Pappata et al., 2002; Zald et al., 2004).

Interestingly, reward related ventral striatal (VS) fMRI BOLD activation has been found 

to extinguish when subjects view rewards passively (Hakyemez et al., 2008), and related 

PET-derived dopamine responses are small when received rewards are not necessary 

for optimizing future performance (e.g., learning) (Urban et al., 2012). In contrast, 

VS engagement has been reported when rewards are successfully used to learn reward 

contingencies, that is, during successful reward learning (Schönberg et al., 2007), suggesting 

that the greater task context may be important for recruiting DAergic activity. Recent work 

has suggested that VS RPE responses may directly support learning by adaptively coding 

the PE as scaled by the variance of the distribution (Diederen et al., 2016). These contextual 

contingencies of DA signaling may also point to a role in supporting the formation of 

higher-level learning heuristics. For example, strategy set shifting recruits a network of 

ventral striatal-prefrontal cortical regions (Floresco et al., 2009, 2006), and lesions of the 

nucleus accumbens impair this ability while leaving reversal learning intact (Block et al., 

2007; Reading and Dunnett, 1991).

Characterizing the contribution of DA to both momentary prediction error signals 

and higher-order, contextually sensitive learning heuristics requires both temporal and 

neurochemical sensitivity. However, the relationships between DAergic signaling and 

neuronal activation, and the relative contribution of these processes to reward reactivity 

and reward learning in humans, has been hampered by methodological limitations. While 

PET imaging can provide a direct measure of different DA processes, measurements occur 

over extended periods of time (e.g., at the whole session level, typically >30 min) limiting 

our ability to assess what aspects of learning are associated with DA. fMRI can be used to 

assess trial, epoch, and condition specific responses to rewards and learning but it does 

not provide a direct measure of DA. Recent advances have allowed the simultaneous 

acquisition of both PET and fMRI data, suggesting the possibility of characterizing 

neural activity with both the spatial and temporal precision of fMRI with the molecular 

specificity provided by PET, though few studies to date have used this approach to study 

dopaminergic contributions to reward processing. Comparison of fMRI-based activation 

with [11C]Raclopride PET imaging has supported the formulation of refined models of DA-

evoked neuronal activation (Mandeville et al., 2013), and mechanisms underlying functional 

connectivity (Kullmann et al., 2021). A recent report using such an approach to characterize 

reward processing in depression has demonstrated differences in D2/D3 receptor density 

that are not reflected in fMRI-based reward activation responses (Phillips et al., 2022). 

Other approaches, while not simultaneous, have shown that pre-synaptic DA function via 

DAT receptor density are associated with fronto-striatal functional connectivity (Kaiser et 

al., 2018) and expectation-related activation in the nucleus accumbens (Dubol et al., 2018), 

supporting a link between striatal DA signaling and fMRI-based measures of cortical and 

subcortical reward processing.
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However, studies using simultaneous DA-ergic PET imaging and fMRI are still relatively 

uncommon due to technical hurdles, in particular when coupling this approach with PET 

designs to assess DA signaling, rather than baseline receptor density. Here we used a multi-

modal, molecular MRI (mMRI) approach to simultaneously obtain task-related changes 

in raclopride-based PET measures of D2/D3 receptor function and fMRI trial-level blood 

oxygen level dependent (BOLD) responses during a reward learning task that assesses 

both reward receipt and learning processes. By simultaneously acquiring these measures 

as subjects performed a reward learning task, we characterize how these distinct measures 

of underlying neural activity reflect computational reward learning mechanisms, both in 

terms of trial-to-trial activation responses, and in contribution to DA-specific signaling 

mechanisms. Our results support a model in which reward responses are reflected by 

neuronal activation of ventral striatal regions, but in which individual differences in striatal 

DA release, in conjunction with the recruitment of a network of prefrontal cortical regions, 

support the use of task-optimal learning strategies, rather than momentary signaling of 

prediction errors alone. Our results provide direct evidence in behaving human subjects that 

distinct aspects of DA physiology and function support active learning processes in addition 

to reward reactivity. Understanding the specificity of DA function can inform basic DAergic 

mechanisms as well as their association with impaired function such as in psychopathology 

(addiction, psychosis, mood disorders).

2. Material and methods

2.1. Participants

Eighty-one participants (ages 18–30, mean age 23.3 +/− 3.6, 41 female) completed the 

full testing protocol, which included an in-lab session and a combined MRI/PET session 

that was performed on a separate day subsequent to the behavioral session. Participants 

were recruited from the local population, and were excluded for major psychiatric illness 

affecting themselves or a first degree relative; prior neurological illness or injury including 

loss of consciousness; clinical syndrome levels as assessed by the Adult Self Report (ASR) 

scale; pregnancy (assessed by urine test), lactation; drug use within the last month; history 

of alcohol abuse; or contraindications to both MRI (e.g., metal in body) and PET (e.g., 

prior recent radiation exposure). Participants were consented for both the behavioral and 

imaging components of the study, and research protocols were approved by the University 

of Pittsburgh institutional review board, including the radiation safety committee and 

radioactive drug research committee.

2.2. Behavioral task

Participants performed six 5-minute blocks of a reward learning task while in the scanner. 

In the task, participants controlled a frog avatar on a 3 × 3 map which consisted of 

a grid superimposed on three landmark images (see Fig. 1A). Each map location was 

pre-determined to have a randomized reward probability of 20%, 50%, or 80%. Three grid 

locations were assigned to each probability level, and the map layout was chosen to avoid 

common patterns (e.g., three high reward squares in a row). The underlying probabilities 

were maintained throughout the six task runs. Participants were instructed to explore the 

‘map’ to find the cells with most rewards thus encouraging them to learn probability 

Calabro et al. Page 4

Neuroimage. Author manuscript; available in PMC 2023 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contingencies in order to maximize their earnings (up to $25) over the course of the entire 

session.

Participants were instructed “In this game, you get to be a frog. Your job is to jump around 
the game board collecting coins to earn points. In this game you will be working towards 
the $25 bonus.” On each trial, participants were presented the option to move to one of 

two different map locations. The two possible locations were pseudo-randomly selected and 

offered to ensure that the actual reward sequence was matched across participants. This 

was done so that all participants earned the maximum number of rewards, allowing for 

equivalent potential for reward receipt in driving DA involvement, and to ensure that all 

map locations were explored. The sequence of reward outcomes was predetermined such 

that the choices offered on each trial preserved the temporal reward structure across subjects, 

while still allowing subjects to make realistic choices (40 reward, 10 non-reward outcomes 

for the 80% locations; 25 rewarded, 25 non-rewarded for the 50% locations; 10 rewarded, 

40 non-rewarded for the 20% outcomes). On each trial, we tracked which location types 

that still had outcomes remaining for the outcome type assigned to that trial number and 

presented two map locations randomly selected from those reward probability levels. E.g., 

if trial i was designated a reward trial, and neither the 80% nor 50% had yet reached their 

allotted number of rewarded trials (40 and 25, respectively), then two locations from among 

the six 80% and 50% locations would be randomly chosen and presented as choice options. 

This schema guaranteed that each reward probability level in aggregate would match the 

desired reward sequence, and that every participant received the full monetary reward as 

long as they completed the task, while still allowing for each map location to have its own 

reward probability.

At the start of each trial, two locations were labeled with hash marks (“#”) for a random 

duration from 1 to 6 s, during which subjects were able to consider which square they would 

move to (thus providing decision-making time, and the opportunity for reward expectation). 

After this, the symbols were randomly re-labeled as “1” and “2” so that participants could 

make their response. After selecting a response, the avatar moved to reflect their new 

location, and feedback was presented via visual and auditory cues to indicate whether they 

received a reward (“cha-ching!”) or not (buzzer), and if so, the visual stimulus indicated 

whether it was a low reward (single coin, 75% of rewarded trials) or high reward (pile of 

coins, 25% of rewarded trials).

Thus, the task is a version of previous multi-arm bandit tasks coupled with a restricted, 

2-alternative forced choice task, similar to those which have been used successfully even in 

younger populations (e.g., Schulz et al., 2019). Given the extended PET acquisition (~30 

min to obtain a task estimate), the complexity of the task design and learning load ensured 

that subjects would need to continue learning throughout the acquisition period in order to 

reach optimal performance. This design also helped enable sufficient inter-subject variability 

in the overall success of learning, facilitating comparisons between those who did and did 

not learn the underlying reward structure of the map.

At the end of each block, participants were presented feedback on their total earnings in 

arbitrary unit points, which they were told would result in a $25 reward at the end of the 
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study if they reached a certain range of points. Participants were not given direct feedback 

about monetary earnings until after the scan was completed. At the completion of the 

six blocks, participants were tested on their knowledge of which map locations were the 

most profitable. In this post scan “map test”, participants were presented 50 pairs of map 

locations and were instructed to report which of the two squares was better. No feedback 

was given during this phase, allowing it to be used as a pure measure of the degree to which 

participants had learned the map (i.e., there was no exploratory value, as during the main 

task).

On a portion of trials, after receiving feedback participants performed either a rewarded or 

unrewarded anti-saccade task. Although this data was modeled in fMRI analyses described 

below, results are not presented here, as this was designed to probe cognitive processes 

for a separate study. In order to learn the mechanics of the task, participants were trained 

using an abbreviated (single 5-min block) version of the task both during the in-lab session 

which occurred prior to the scan day, and again immediately prior to entering the scanner. 

Participants were instructed that the maps used during these training sessions would be 

different than the map used during the scan. Across all analyses incorporating behavioral 

data, data points more than 3 standard deviations from the mean were considered statistical 

outliers, and were excluded.

2.3. Reinforcement learning model

To assess performance during the task, we fit a reinforcement learning (RL) model to 

each participant’s trial-by-trial responses. The model tracked the expected value (EV) of 

each map location following the participant’s moves (S), and updated the EV on each trial 

following feedback via the learning rule

V i, j(t + 1) = V i, j(t) + υ * R − V i, j(t) (1)

where (i, j) ∈ S where V is the expected value of location (i,j), t is the trial number, υ is 

the learning rate and R is the reward received on the current trial (0 for no reward, 0.5, for 

a low reward, and 1 for a high reward; low reward values were determined based on the 

group mean parameter estimate from a preliminary model using a free parameter bounded 

by 0,1). To assess model likelihood, probability that the subject would choose location “1″ 
was modeled via the softmax function, as

P1 = 1
1 + e−β EV 1 − EV 2 (2)

where β is the temperature parameter, and EV1 and EV2 are the expected values of the two 

map choices for the given trial.

Within this model framework, we considered a number of additional parameters based on 

a Variational Bayesian Analysis (VBA) using the VBA toolbox in MATLAB (Daunizeau et 

al., 2014), as described in the Supplemental Material. The consensus model incorporated 

separate learning rates for positive and negative prediction error outcomes, similar to 

previous reports (Chase et al., 2010). Overall model likelihood was computed as the 
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cumulative probability of the choices made across all trials. Free parameters were 

determined for each subject by minimizing the overall log likelihood of the model. To 

validate this modeling approach, we performed posterior simulations for each participant 

based on their best fit model parameters from the winning model (see Supplemental 

Material and Supplemental Figure S3). These simulations showed that the model parameters 

produced simulated data which was significantly associated with actual performance among 

RL-learners (performance * group interaction p = 0.01; p = 0.0002 among RL-learners), 

and showed similar improvement across task blocks (block by learner group interaction, p = 

0.014; among RL Learners, a significant main effect of block, p = 9.1 × 10−6) as observed 

in our main data, indicating that the winning model and best fit parameters were capable of 

reproducing key aspects of our behavioral data.

Based on the consensus model, we performed simulations of our task using a variety of 

model parameters to quantify the association between RL parameters and performance as 

measured by the proportion of trials with moves to higher reward probability locations. 

These simulations showed that the softmax temperature parameter, which captures how 

often the higher EV square was chosen, was a strong driver of overall performance. 

Additionally, the positive prediction error learning rate exhibited a quadratic relationship 

with performance (Fig. 1B), consistent with a “sweet spot” for performance, reflecting that 

at low learning rates, the model failed to accumulate enough information to make optimal 

choices, whereas at high learning rates, updates were so large that previously learned 

information was neglected in favor of recent outcomes. Thus, for this task, an optimal 

learning rate was associated with learning rates near 0.4. A similar pattern was observed for 

negative PE learning rates. Simulation results were used to define an “optimality” measure 

of both the positive and negative learning rate, defined as the percentile performance of the 

rate being used (peak learning rate=100%, minimally performing learning rate=0%).

2.4. MR data acquisition

MRI and PET data were collected simultaneously over 90 min on a 3T Siemens 

Biograph molecular Magnetic Resonance (mMR) PET/MRI scanner. Participants’ heads 

were immobilized using pillows placed inside the head coils, and participants were fitted 

with earbuds for auditory feedback and to minimize scanner noise. A 12-channel head coil 

was used. Structural images were acquired using a T1 weighted magnetization-prepared 

rapid gradient-echo (MPRAGE) sequence (TR, 2300 ms; echo time [TE] = 2.98 ms; flip 

angle, 9°; inversion time [TI] = 900 ms, voxel size = 1.0 × 1.0 × 1.0 mm). Functional images 

were acquired using a blood oxygen level dependent (BOLD) signal from an echoplanar 

sequence (TR, 1500 ms; TE, 30 ms; flip angle, 50°; voxel size, 2.3 × 2.3 mm in-plane 

resolution) with contiguous 2.3mm-thick slices aligned to maximally cover the entire brain.

2.5. MR data analysis

Structural MRI data was preprocessed to extract the brain from the skull, and was warped to 

the MNI standard brain using both linear (FLIRT) and non-linear (FNIRT) transformations. 

Task fMRI images were processed using a pipeline designed to minimize the effects of 

head motion (Hallquist et al., 2013), including 4D slice-timing and head motion correction, 

wavelet despiking (Patel and Bullmore, 2016), co-registration to the structural image and 
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non-linear warping to MNI space, local spatial smoothing with a 5 mm Gaussian kernel 

based on the SUSAN algorithm (Smith and Brady, 1997), intensity normalization, and high 

pass filtering (f > 0.0125 Hz). Frame-wise motion estimates were computed, and volumes 

containing frame-wise displacement (FD) > 0.9 mm or DVARS (a measure of total brain 

signal change) > 21 were excluded from analyses.

First level analysis was performed by modeling all trial events in AFNI’s 3dDeconvolve 

(Cox, 1996). Event timing was aligned to the hash mark interval (decision making and 

expectation, when the available squares were demarcated, but before they were numbered 

and participants were able to respond), the feedback event (in which participants made 

their selection and received feedback,), and the preparatory and outcome phases of the 

embedded anti-saccade task (modeled with GAM HRFs). Both expectation and outcome 

phases were modeled parametrically based on the reinforcement learning model. Given 

that the behavioral RL model results suggested separate learning rates for positive and 

negative outcomes, we modeled these event types separately in the fMRI data. To obtain 

parametric regressors, we used group mean RL model parameters to generate trial-by-trial 

estimates of reward expectation and prediction error (Wilson and Niv, 2015). This provided 

per-trial estimates of expectation and prediction error, which we then used these as the 

basis of a parametric fMRI analysis, in which we estimated both constant and linear 

terms for expectation, positive prediction error, and negative prediction error, producing 

6 total contrast maps, each modeled with a canonical GAM hemodynamic response function 

(HRF). The constant term for each of these captured the mean response at the trial interval 

(epoch) which was independent of the magnitude of the expectation or PE on the given 

trial, while the linear term captured the extent to which BOLD activation scaled linearly 

with expectation or PE, respectively. We note that we did not orthogonalize these regressors 

to facilitate interpretation of each activation map. In all analyses, we included a 2nd order 

polynomial regressor separately for each run to account for baseline shifts and drift.

Group average activation for each of the 6 contrast maps was assessed by a 1-sample 

t-test using AFNI’s 3dTtest++ function. Cluster correction was performed by assessing 

the spatial autocorrelation of the residuals from each subject’s first level analysis and 

using the mean smoothness parameters as inputs to AFNI’s 3dClustsim, using the ACF 

estimation (Cox et al., 2017). Based on this, we identified clusters of significant activation 

for each contrast map given a voxel-wise p<0.01, and a Bonferroni corrected cluster-wise 

significance of α<0.05 based on 6 comparisons (α<0.0083 uncorrected). To assess the 

relationship to learning and DA release, we then performed a secondary analysis of the 

data using log(ΔAIC) (an estimate of RL model support for successful task learning) and 

VST%ΔBP (PET-derived estimates of DA release) as covariates for each of the 6 contrast 

maps. We restricted this analysis to regions that showed a significant main effect of task 

activation, and again performed cluster simulations within these restricted maps to identify 

significant clusters of activation that scaled with learning and DA release, respectively. 

Cluster significance was assessed for each map based on a voxel-wise p<0.05 and a 

cluster-wise α<0.05 corrected based on 6 comparisons (α<0.0083 uncorrected). Since our 

group mean RL parameters included non-RL learners, who were defined based as being 

poorly fit by the RL model, we repeated this analysis using RL parameters derived from 

RL-learners only to ensure that inclusion of the non-RL learners did not introduce noise into 
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the parametric fits. This produced highly correlated activation maps (all voxelwise r>0.8), 

detailed in Supplemental Table S3.

2.6. PET data acquisition and modeling

The PET acquisition methods and modeling approach have been previously reported (Larsen 

et al., 2020). Briefly, we used a 90 min bolus+infusion administration of [11C]Raclopride 

(RAC) consisting of a 33–40 mCi dose. Subjects were at rest for the first 35–40 min 

of the scan, at which point they began the reward learning task. We used a modified 

simplified reference tissue model (SRTM) model with a cerebellar reference region to 

quantify both baseline BPnd (binding potential prior to performing the task), as well as the 

change in BPnd during the task, modeled as a step function. The quantity γ by which the 

BPnd decreased during the task is taken as a measure of DA release, since a reduction in 

BPnd reflects increased DA occupancy. Details of both the PET acquisition and modeling 

are reported in the Supplemental Material. In addition to voxelwise analyses, anatomical 

regions were extracted from an atlas defined and validated based on structural T1 and PET 

([11C]PHNO) data (Tziortzi et al., 2011). From this atlas, we considered bilateral ventral 

striatum, pre/postcommisural caudate, and pre/postcommisural dorsal and ventral putamen, 

to identify regions which overlapped most strongly with the foci of voxelwise results.

3. Results

3.1. Behavioral performance

Performance on our reward learning task was assessed within-task, based on both the 

proportion of moves made to the higher probability map location and by reinforcement 

learning (RL) model fit, as well as post-task, based on a post task map learning assessment. 

RL model fits were characterized based on the ΔAIC compared to a “guessing” model 

and exhibited a bimodal distribution (see Supplemental Figure S2), which we used to 

define ‘RL learners’ (ΔAIC>10) and ‘non-RL learners’ (ΔAIC<10). This criteria is based on 

previous recommendations (Burnham and Anderson, 2002), and provided an approximate 

median split, with 41 participants classified as RL learners and 40 as non-RL learners 

(see Supplemental Table S1 for subject characteristics). These groups did not differ on age 

(RL learners 23.6+/−3.2, non-RL learners 22.9+/−4.1, p = 0.37), gender (RL learners 49% 

female, non-RL learners 54% female, p = 0.66), or IQ (RL learners 108.5+/−9.4, non-RL 

learners 108.8+/−10.6, p>0.9). Since RL learners and non-RL learners were defined by 

whether the RL model explained choice patterns, as expected we found that RL learners 

showed a greater proportion of optimal moves (defined as choices to the higher true 

probability location) than non- RL learners (t = 3.3, χ2 = 11.1, p = 0.0008, see Fig. 2A). 

Not surprisingly, this difference was not present in the first block (t = 0.57, p = 0.57) when 

participants had not yet had the opportunity to learn the task, but emerged beginning with 

the second block (t = 2.36, p = 0.02) as subjects had time to explore and learn the map. 

Supporting our RL group definitions, during the post-task map learning assessment RL 

learners identified 77.2% of map pairs correctly, while non- RL learners identified 62.3% 

of pairs correctly (F = 50.5, p<0.10−9, see Fig. 2B). Finally, both groups showed equivalent 

response times (RT; t = 0.095, χ2 = 0.019, p = 0.88), with faster responses with later blocks 

(t=−6.64, χ2 = 99.2, p<0.0001) and no group by block RT interaction (t=−0.79, χ2 = 0.62, p 
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= 0.42, see Fig. 2C), indicating that both groups were engaged to a similar degree in making 

task responses. Additionally, performance on the embedded response inhibition antisaccade 

task did not differ by group in accuracy (t=−0.99, p = 0.33), latency (t = 0.21, p = 0.83), 

or inter-trial performance variability (t=−0.039, p = 0.97), supporting that subjects in both 

groups were engaged and attentive throughout the scan session to a similar extent.

3.2. Striatal da release

PET [11C]Raclopride data was analyzed to assess dopamine (DA) release over the entire task 

period (approximately 30 min). A decreased non-displaceable binding potential (BPND) as 

measured during the task period compared to baseline indicates fewer available receptors, 

consistent with the release and binding of DA which displaces the tracer, thus providing a 

measure of task-dependent DA release. We assessed DA release voxelwise across the entire 

striatum to identify striatal regions which had significant changes in their [11C]RAC BPND. 

We found four significant clusters which survived cluster correction (family wise p<0.01) of 

decreased BPND: bilateral clusters centered on the ventral striatum (VST) regions extending 

slightly into the precommisural caudate nucleus (CN), and bilateral clusters contained within 

the precommisural dorsal putamen (PUT) (see Fig. 3A–C).

To characterize the association of dopamine release with reward learning performance, we 

compared task-related change in RAC BPND with individual RL model parameters, based on 

the consensus RL model. We found a significant difference between RL learners and non-RL 

learners in VST DA release, as indexed by%ΔBPND (t = 2.11, p = 0.038, see Fig. 3E). This 

effect was specific to DA release as no such effects were observed for baseline RAC BP 

(Fig. 3D), and to the ventral striatum as effects were not present in other striatal regions 

which showed an overall task effect on DA release (Fig. 3E). Furthermore, we found that 

VST DA release (%ΔBPND) exhibited a significant quadratic relationship with learning rate 

for positive outcomes (“+PE”; linear term, t = 2.88, p = 0.0053; mean-centered quadratic 

term, t=−2.58, p = 0.012, Fig. 3H), such that higher DA release was observed for those 

with learning rates near 0.5; learning rates that were either very low or very high were 

associated with diminished DA release. This effect persisted when controlling for learner 

category (main effect of quadratic term, t=−2.50, p = 0.015, main effect of learner category, 

t=−3.20, p = 0.002), and did not show a significant interaction with learner category (p>0.6). 

This quadratic relationship exhibited an inverted U shape, peaking for intermediate learning 

rate values, which was consistent with a proportional relationship between DA release and 

the overall optimality of the +PE learning rate (see Supplemental Figure S12; main effect 

of optimality, t = 3.17, p = 0.002; main effect of learner category t = 2.77, p = 0.007; 

no significant interaction, p>0.7). We did not find any significant relationship between DA 

release and either the softmax temperature parameter (“beta”, t = 0.54, p = 0.59, Fig. 3G) 

or the negative outcome learning rate (“−PE”; t = 0.09, p = 0.93, Fig. 3I). Of note, although 

DA release was associated with the learning rate, it did not significantly correlate with the 

overall proportion of optimal response (t=−2.9, p>0.7).

3.3. BOLD reward response

fMRI data was analyzed using a parametric activation analysis based on trial-by-trial 

expectation and prediction error estimates derived from the RL model. Since the behavioral 
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analysis suggested separate learning rates for positive and negative PE outcomes, we 

modeled these separately in the fMRI data as well. This produced a total of 6 contrast 

maps: constant (i.e., mean) and linear (i.e., proportional) terms for each of the expectation, 

positive PE and negative PE terms. The constant terms captured the mean activation of each 

epoch across all trials, while the linear term captured the extent to which BOLD activation 

scaled with the level of expectation or PE respectively among trials. Overall, these 6 contrast 

maps captured widespread cortical and sub-cortical activation that was largely consistent 

with previous reports (see Fig. 4 for striatal activation, and Supplemental Figure S5 for 

whole brain activation maps). Notably given our a priori interest in the striatum as a region 

of interest, we found significant activation for both positive and negative PE throughout the 

striatum associated with the constant PE term (i.e., present on all trials, Fig. 4, top row). 

Additionally, we found bilateral activation in the putamen on positive PE trials which scaled 

with the PE magnitude. Overall, mean activation at the expectation epoch tended to be 

negative (i.e., deactivations) throughout the striatum, but we identified a cluster in the ventral 

portion of the caudate which showed increased activation proportional to the trial-by-trial 

reward expectation.

Within task-activated regions, we performed a follow-up analysis to assess the association 

of BOLD activation with successful reward learning on our task. For each of the 6 contrast 

maps, we identified regions with individual differences in activation that scaled with per-

subject estimates of ΔAIC relative to a null model, which we used as a proxy for RL-based 

learning. Notably, we did not identify any significant clusters within the striatum in which 

activation in any of the six contrasts scaled with learning. We confirmed this result using 

an alternative fMRI analysis in which we contrasted rewarded to non-rewarded trials in a 
priori anatomically-defined striatal regions of interest, rather than relying on the RL model 

for parametric estimates (see Supplemental Figures S6 and S7 and Supplemental Table S2 

for full activation details). Furthermore, based on this analysis, no association was found 

between VST BOLD and any of the RL model parameters (Supplemental Figure S9), nor 

with overall task performance (t = 0.13, p>0.8). We did identify several cortical clusters 

whose activation scaled with learning in the model-based analysis of epoch-specific BOLD 

responses. This included regions of the left supramarginal gyrus, superior medial gyrus, 

middle temporal gyrus, and inferior temporal gyrus, whose activation at the expectation 

epoch was inversely proportional to individual differences in learning, as well as clusters in 

the right angular gyrus and precuneus, whose activation at the feedback epoch on positive 

PE trials positively correlated to learning (see Table 1 and Fig. 5). Of note, in both cases, 

correlations were seen with the constant term BOLD response, that is, activation which 

occurred on all trials regardless of the magnitude of reward expectation or prediction error 

(see Supplemental Figure S10 for per-cluster correlations).

3.4. Association of bold activation with vst dopamine release

Given the association between VST DA release and model-based learning parameters, 

we were interested in assessing the relationship of VST DA release and simultaneously 

obtained BOLD task activation. Thus, we performed a voxelwise correlation analysis 

between fMRI activation within the task-activated regions described above and the VST 

DA release assessed based on the change in RAC BPND during the task. Based on this 
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analysis, we found that only one fMRI contrast, the mean expectation-related activation, 

produced cluster-corrected significant activation which was associated with VST DA 

release. Specifically, we identified four significant clusters which survived cluster correction 

as well as Bonferroni correction based on the six contrast maps tested. These included 

regions of the left Rolandic operculum and superior medial gyrus, as well as midline 

thalamus and anterior cingulate clusters (see Fig. 6 and Table 2). In all four cases, the sign of 

the association was positive, indicating higher BOLD activation in subjects with greater DA 

release (see Supplemental Figure S11). Neither positive nor negative PE contrasts produced 

any significant clusters associated with VST DA release.

4. Discussion

This study provides direct evidence from simultaneous PET-fMRI imaging for dopaminergic 

contributions to reward learning processes. We leveraged a simultaneous PET-fMRI 

acquisition to characterize the role of DA during a probabilistic reward learning task. 

Methodologically, this approach is valuable for linking temporally sensitive fMRI measures 

to transmitter-specific PET responses. Since learning is a dynamic process, obtaining 

this information within a single scan session provides an unprecedented view of the 

functional and neurophysiological processes underlying reward learning. Here, we leveraged 

a comparison between these imaging measures and learning performance on a probabilistic 

reward learning task to identify neurophysiological processes associated with reward 

learning.

To characterize the computational strategies employed by participants in our task, we 

tested a large number of candidate reinforcement learning (RL) models and found that 

the most parsimonious account of performance arose from a 3-parameter model which 

incorporated separate learning rates for positive and negative prediction error outcomes, and 

a temperature parameter which governed the reliability with which participants selected the 

higher expected value map location (e.g., Supplemental Figure S1). As aforementioned, we 

further performed model simulations that showed a reasonable reproduction of participant 

behavior, supporting the validity of the RL model (Supplemental Figure S3). Still, although 

this model was able to reproduce key aspects of behavior, as always there remains space for 

improving the fit with performance. Thus, we consider that this approach indicates that the 

use of independent learning strategies for positive and negative reward outcomes are among 

the key parameters governing participants’ decision making strategies in our task, supporting 

the use of valence-dependent learning strategies.

Consistent with previous studies, our results revealed that performing a reward learning 

task elicits both a robust BOLD activation (Fig. 4 and Supplemental Figures 5 & 6) as 

well as PET DA response (Fig. 3) in the ventral striatum. Interestingly, while striatal 

BOLD responses to both reward expectation and prediction errors were present to a similar 

degree independent of learning performance, there was a significant learning dependent, 

task-related DA response, which was significantly greater among participants that exhibited 

reward learning performance consistent with the use of RL learning strategies (Fig. 3E). 

Further, this DA response was correlated with RL model fit parameters (Figs. 3H and 

S12), such that greater DA release was associated with the use of a more optimal learning 
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rate. We operationalize optimality here to refer exclusively to the learning rates utilized 

by participants based on model simulations of our task (Fig. 1B): very slow learning rates 

lead to sub-optimal performance since they result in very small updates on each trial, such 

that participants would need many trials for internal expected value estimates to reach 

true probability levels, whereas very high learning rates would result in excessive updating 

on each trial, effectively causing previously learned outcomes to be neglected. Our model 

simulations confirmed that for this task, an optimal learning rate occurred for learning rate 

values near 0.4, with performance falling as learning rates varied in either direction, though 

we note that this optimal value is highly task-specific, and that different choices of reward 

probabilities, temporal reward dynamics, and other task parameters can significantly affect 

the value. This value mirrored DA release results, in which greatest DA responses were 

seen in participants with learning rates near the optimal value (Fig. 3H), as confirmed by a 

relationship between DA release and the overall optimality of the positive outcome learning 

rate (Figure S12).

Interestingly, while differences in DA release were related to the optimality of the RL 

learning rate parameter, they were not directly associated with task performance metrics. 

The specificity of this effect to learning rate, and not overall performance, may be explained 

by the role of the temperature parameter in these associations. That is, overall task 

performance depends on both the learning rate, which sets how participants acquire new 

information, and the temperature parameter, which determines how reliably participants 

use this information to pick the “better” choice (Fig. 1B). But while the temperature 

parameter has a substantial effect on subject performance, it was not directly associated with 

DA release, confounding associations between DA release and overall task performance. 

Instead, our results suggest that DA release is most strongly and specifically linked to the 

effectiveness of the learning rate employed, independent of the resulting reward outcomes, 

thus pointing to a DA response mechanism that is specifically linked to the optimization 

of learning processes. This is consistent with previous reports linking DA signaling to 

balancing the utility of known rewards with opportunity costs (Le Heron et al., 2020) and 

in encoding action policy uncertainty (Gershman and Uchida, 2019), since both the learning 

rate and temperature parameter can be seen as a means of balancing expected, known 

rewards with the utility of exploration. The optimal value of RL parameters varies depending 

on the specific task being used, such that this association with DA may reflect a role in 

learning the overall structure of the tasks, rather than just reactivity to reward contingencies 

of individual map locations.

Of note, individual differences in DA release were not associated with differences in ventral 

striatal BOLD activation associated with either prediction error or reward expectation. 

This mirrors recent reports in clinical studies of depression which identified differences 

in PET-based DA signaling absent any differences in ventral striatal BOLD reward responses 

(Phillips et al., 2022), and which instead found differences in functional connectivity 

associated with DA-related group differences. Similarly, recent work from our group has 

suggested that changes in DAergic function through adolescent development drive changes 

in fronto-striatal functional connectivity (Parr et al., 2021). These studies suggest potential 

interactions whereby striatal DA function might more directly modulate activation of other 

extrastriate regions. Indeed, we found that individual differences in DA release were 
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uniquely correlated to BOLD activation in a network of cortical regions, including the 

dorsomedial PFC, ACC, Rolandic operculum, and thalamus (see Fig. 6). Several of these 

regions have well established links to striatal DA signaling. The thalamus is known as a 

hub mediating striatal connectivity to the cortex (Alexander et al., 1986). This pathway 

is critical to mediating well known effects of DAergic inputs on prefrontal cortex activity 

supporting cognitive control (Ott and Nieder, 2019) via modulation of the ACC (Holroyd 

and Yeung, 2012) and others, as well as for conditioning stimuli affecting activation in the 

superior medial gyrus (e.g., Diaconescu et al., 2010; Hartwell et al., 2011), both of which 

were also identified by our analysis. We note that this analysis cannot assess causality at 

the time scales we are measuring, since our PET measure is defined over the course of the 

entire task period (~30 min), while BOLD responses are aggregated over specific epochs 

distributed throughout the scan. Thus, while it remains equally possible the striatal DA 

release drives future expectation-related activity, or that prefrontally-mediated expectation 

responses facilitate striatal DA release, these results indicate that striatal DA may work in 

tandem with cortical learning mechanisms.

We additionally identified a set of cortical regions that showed differential activation 

associated with our learning criteria (Fig. 5). Interestingly, activation during the expectation 

epoch of our task was systematically lower during reward expectation among RL Learners 

(see also Supplemental Figure S10), while positive outcome PE responses were higher 

among RL learners. Contrary to our expectation, the strongest associations between BOLD 

activation and both learner criterion and DA release were present in the ‘constant’, rather 

than ‘linear’ (i.e., proportional), activation maps. This suggests that DA-driven learning was 

mostly strongly associated with a change in activation overall (i.e., on all trials), rather than 

proportionally to the reward expectation or outcome (prediction error). This is similar to our 

observation of BOLD activation correlated to DA release occurring across all trials, further 

supporting that DAergic learning in our task may be associating with learning strategies and 

heuristics, which are applied uniformly across trials, rather than signaling the trial-specific 

magnitude of reward outcomes alone. Taken together, these results provide support for a 

model by which NAcc DA release supports reward learning by modulation of cortical BOLD 

responses, primarily during the reward expectation phase of the task, rather than by directly 

affecting either positive or negative prediction error responses, suggesting a possible cortical 

circuitry of subcortically coupled learning.

Striatal DA has been associated with a number of distinct functions, including motor 

processes, reward response, and learning (Berke, 2018). Dissociating these contributions 

has been difficult, especially in human studies, in part because these functions typically 

co-occur. The characterization of learning-related behaviors in our study allows us the 

opportunity to partially disambiguate these processes. First, since the sensorimotor aspects 

of the task were matched across all participants, it is relatively unlikely that these could 

directly contribute to the learning-related differences we observed. In addition, in the fMRI 

BOLD analyses, we were able to assess how activation scaled with the magnitude of 

expectation and prediction error. There was no difference in the motor aspects of these 

contrasts, since the reward classification did not occur until the reward was presented, which 

was after the completion of the motor response. Thus, motor differences are unlikely to 

contribute to the parametric BOLD responses presented here. Nor are motor effects likely to 
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be related to the mean or parametric expectation terms, since no motor response occurred 

at this task epoch. Motor responses could be present in the mean activation for positive 

and negative prediction error contrasts, but we note that these contrasts did not show any 

association with either learning nor VST DA release, and are thus unlikely to be account 

for these aspects of our results. Equivalent decreases in response time through the task 

and performance of inhibitory control task in both groups suggests that motivation and 

engagement was similar across groups and did not underlie the brain functional differences. 

Finally, we matched the reward schedule across participants, such that all participants 

received the same pattern of reward feedback and with matched timing. Taken together, 

these indicate that visuomotor and attentional engagement differences are unlikely to 

contribute to individual differences in DA release that we have reported.

Separating the contributions of reward receipt and reward learning is even more challenging, 

since these are often inextricably linked. Work from rodent models has long indicated 

the reward prediction errors drive DAergic activity in the ventral striatum (Schultz, 2016, 

1998), paralleling fMRI studies (Berns et al., 2001; Diederen et al., 2016; Niv et al., 2015; 

Rodriguez et al., 2006). However, while we observed trial-wise BOLD activation in the 

ventral striatum, individual differences in this measure were not related to per-subject DA 

release. One possibility for these results, supported by previous work, is that fMRI may be 

particularly sensitive to post-synaptic glutamatergic signaling (Attwell and Laughlin, 2016; 

Logothetis, 2003), and relatively insensitive to DA activity. However, another possibility 

arises based on our PET finding that greater DA release was associated with learning 

strategies on our task. Based on this, VST DA release may be playing a different role than 

VST BOLD, wherein DA sets higher order task strategies and heuristics through interactions 

with cortical regions as we have discussed, while BOLD activation reflects expectation and 

prediction error responses, which scale with reward magnitude across trials.

Interestingly, overall response during the reward expectation epoch was seen as a BOLD 

deactivation relative to baseline, although responses increased (smaller deactivation) as 

reward probability levels increased. This was likely not due to limitations in the HRF model 

given the use of temporal jittering and the relatively long ISIs included in our task design, 

and supported by the observation that the modeled HRF shows both an initial baseline value 

of 0, and a clear return to 0 after ~16 s (see Supplemental Figure S8) as is typical for 

task-evoked HRFs. Instead, deactivation may reflect that at each trial only 2 map locations 

were available for responding vs 7 locations that were not available, though still visually 

present. Evidence from rodent electrophysiology has shown that a number of VS/NAc 

neurons show suppression of firing rates during reward expectation, either continuously 

throughout the task (Taha and Fields, 2006), or specifically during cue sampling (Roesch et 

al., 2009). Thus, the overall response may reflect suppression of location-specific responses 

for the 7 unavailable locations, with a comparatively small additive factor from the 2 active 

choices (which scales parametrically with the reward level of these two locations, as we 

observed). Anecdotally, we have also observed that subjects tended to have ‘favorite’ map 

locations. Since only two of nine map locations are available for selection on each trial, most 

trials would not have included their preferred choice. Thus, the mean expectation response 

may include a negative response reflecting the failure to receive preferred choices (i.e., a 
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de facto cue-related prediction error signal), which is then modulated (upwards) if other 

promising choices are included.

There are several important methodological considerations and limitations when drawing 

inferences from this study. First, although a number of PET studies have proposed modeling 

of single-session task designs, such approaches are still relatively less common. A particular 

concern is that these models may systematically overestimate pre-task binding potential, 

or mis-estimate other parameters (e.g., k2’) of the PET compartment model, creating false 

positive task effects. We think this is unlikely to account for our results for several reasons. 

For one, we began our task relatively late in the session (35–40 min), as indicated by prior 

simulation studies (Wang et al., 2017) and which is relatively conservative compared to 

other recent approaches (Hamilton et al., 2018), such that pre-task BPnd estimates are less 

likely to be significantly biased. For another, while any such biases could undermine the 

main effect of task, they are unlikely to explain the learning-related differences we have 

seen, since both RL learners & non-RL learners began the task at the same time within their 

scan sessions. Similarly, a mis-estimation of reference tissue model parameters, such as k2’ 

(the reference tissue rate constant), would affect all voxels, making it less likely that we 

would see effects constrained to specific clusters within the striatum. Although continued 

efforts are needed to more fully define optimal modeling approaches and to continue to 

quantify potential sources of bias (e.g., see Levine et al., 2022), such approaches have the 

potential to greatly expand our ability to characterize the contribution of DA to behavioral 

and cognitive processes. A second limitation arises from the modeling approach we have 

employed with our fMRI data. Specifically, we used a canonical hemodynamic response 

function (HRF) in order to measure the amplitude scaling of activation across trials in 

accordance with reward expectation and outcome (prediction error). However, previous work 

has suggested that the shape of the HRF itself may change depending on reward outcomes 

(e.g., Li and Jasanoff, 2020), which is consistent with observations we have made during the 

expectation epoch of our task (see Supplemental Figure S8). Further work is needed to better 

parametrize these effects in order to measure systematic changes in HRF shape as a function 

per-trial reward measures in order to model these effects simultaneously.

Finally, our interpretations of associations between DA release and the optimality of the 

learning rate are limited by the nature of the learning rate estimates: RL model parameters 

are inextricably contingent upon the particular form of RL model employed, and as 

discussed above, it remains possible (and indeed likely) that there exist other, untested 

models that could perform as well or better in explaining our data. Such formulations would 

likely render different estimates of learning rates, and may identify different associations 

with DA release. Thus, the associations we present should be interpreted within the 

context of the best-fitting RL model we have identified, and future work to continue to 

characterize RL mechanisms employed during reward learning tasks may be valuable in 

further specifying and refining the nature of the relationships we have described. Regardless, 

we believe that better fitting models would refine and extend these results, rather than 

invalidate them. In particular, non-RL learners do not appear to employ strategies consistent 

with the RL models we have tested. While it is possible that there exist other models that 

would capture what these participants are doing in the task, any such model would appear 

to be ineffective: overall performance of these subjects is barely above chance, does not 
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meaningfully increase across blocks, and does not appear to result in strong recollection 

of reward contingencies post-scan. Thus, future efforts not only to further characterize RL 

learning strategies, but to assess individual differences in both RL parametersand the model 

strategies themselves (e.g., Piray et al., 2019), will be necessary for characterizing the 

diversity of learning approaches participants employ.

In sum, we suggest that these data support a DAergic contribution to learning that is 

separate, or in addition to, its role in signaling momentary prediction errors. This process 

of identification of task structure and tailoring of optimal learning rates may be mediated 

by an interaction between striatal DA and the activation of a network of executive cortical 

regions. These results have important implications in understanding the role of dopamine 

in reward contexts. Dopamine is still often considered in terms of its role in reward 

reactivity. However, our data provide in vivo evidence from simultaneous PET and fMRI 

supporting a growing body of literature suggesting that reward receipt alone is not sufficient 

to account for ventral striatal DA responsiveness (e.g., Hakyemez et al., 2008), but depends 

critically on the use of rewards as the basis for learning. There are important implications 

to considering the role of DA in learning beyond reward reactivity for clinical conditions 

with DA dysfunction that show abnormal reward processing such as in Parkinson’s Disease 

(Skvortsova et al., 2017), which may reflect effects on motivated learning in addition 

or instead of reward reactivity. Adolescent peaks in sensation seeking (Spear, 2000) are 

frequently deemed to be underlied by elevated reward reactivity (Luna et al., 2015; Luna 

and Wright, 2016; Shulman et al., 2016), but these same changes in neurophysiology may 

impact unique aspects of learning during this time. Our results provide compelling new 

evidence for multiple roles of dopaminergic function in reward reactivity and learning that 

can inform comprehensive models of motivation and impact our understanding of lifespan 

dopaminergic development and clinical dysfunction.
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Fig. 1. 
(A) Task schematic. On each trial, subjects were presented two map locations as possible 

movement choices, indicated by hash marks (“#”). Following a randomized delay, these 

symbols were replaced by the numbers “1″ and “2″ such that the subject could make a 

button press response. Once they responded, the map updated to show their move, and 

feedback was given as both visual (black circle, single coin, pile of coins) and auditory (flat 

tone, “cha-ching” sound) feedback to indicate whether a reward was received, and whether it 

was small (low reward) or large (high reward). (B) Simulated reinforcement learning model 

data for combinations of the positive prediction error learning rate and softmax temperature 

parameter (Beta) in successfully making optimal movement choices.
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Fig. 2. 
Task performance by learner group. Performance as quantified by (A) proportion of optimal 

trials by blocks, (B) distribution of post-task assessments for RL learners (L) and non-RL 

learners (NL), and (C) response time by block, split by learner category. Dashed horizontal 

line indicates chance performance.

Calabro et al. Page 23

Neuroimage. Author manuscript; available in PMC 2023 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
(A-C) Cluster corrected maps of significant task-related change in RAC BP. Slices are 

shown at (A) z = 0 (axial) (B) y = −20 (coronal) (C) y = −12 (coronal). Four clusters of 

activation were observed (left slice), including a bilateral set focused primarily on the ventral 

striatum (VS, panel B), and a bilateral set focused on the precommisural dorsal putamen 

(PUT, panel C). (D-F) Comparisons of RL learners and non-RL learners across regions 

containing task-dependent DA responses (ventral striatum, VST; precommisural caudate 

nucleus, CN; precommisural dorsal putamen, PUT), for (D) baseline (pre-task) RAC BPnd, 

(E) task-dependent change in BPnd, and (F) aggregate BOLD reward response (contrast of 

rewarded vs. non-reward trial outcomes). (G-I) Association of task-related DA release in the 

VST and RL model parameters, including (G) softmax temperature parameter, (H) learning 

rate for positive PE trials, and (I) learning rate for negative PE trials.
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Fig. 4. 
Striatal activation for each of the six fMRI contrasts, including expectation (left), positive 

prediction error (middle) and negative prediction error (right). For each, both mean 

activation at each trial epoch (‘constant’, top row) and activation proportional to reward 

expectation/PE respectively (‘linear’, bottom row) are shown. Activation maps are cluster 

corrected and additionally Bonferroni corrected for six comparisons.
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Fig. 5. 
Cluster corrected correlation of task fMRI activation with reinforcement learning 

performance. Axial (top) and sagittal (bottom) views of significant clusters, for mean (A) 

expectation and (B) positive prediction error contrasts. Activation clusters were identified 

in the supramarginal gyrus (SMG), anterior medial gyrus (AMG), middle temporal gyrus 

(MTG), inferior frontal gyrus (IFG), angular gyrus (AG), and precuneus (PCu) (see Table 1).
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Fig. 6. 
Correlation of expectation-related BOLD activation with VST DA release. Axial (top) and 

sagittal (bottom) views of significant clusters. Significant clusters of activation were found 

in the thalamus (Thal), anterior cingulate cortex (ACC), superior medial gyrus (SuMG), and 

Rolandic operculum (RO) (see Table 2).
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